Conjugate gradient-like algorithms for solving nonsymmetric linear systems

Authors:
Youcef Saad and Martin H. Schultz

Journal:
Math. Comp. **44** (1985), 417-424

MSC:
Primary 65F10; Secondary 65N20

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777273-9

MathSciNet review:
777273

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a unified formulation of a class of the conjugate gradient-like algorithms for solving nonsymmetric linear systems. The common framework is the Petrov-Galerkin method on Krylov subspaces. We discuss some practical points concerning the methods and point out some of the interrelations between them.

**[1]**W. E. Arnoldi,*The principle of minimized iteration in the solution of the matrix eigenvalue problem*, Quart. Appl. Math.**9**(1951), 17–29. MR**0042792**, https://doi.org/10.1090/S0033-569X-1951-42792-9**[2]**O. Axelsson,*A generalized conjugate direction method and its application on a singular perturbation problem*, Numerical analysis (Proc. 8th Biennial Conf., Univ. Dundee, Dundee, 1979), Lecture Notes in Math., vol. 773, Springer, Berlin, 1980, pp. 1–11. MR**569457****[3]**Owe Axelsson,*Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations*, Linear Algebra Appl.**29**(1980), 1–16. MR**562745**, https://doi.org/10.1016/0024-3795(80)90226-8**[4]**Paul Concus and Gene H. Golub,*A generalized conjugate gradient method for nonsymmetric systems of linear equations*, Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975) Springer, Berlin, 1976, pp. 56–65. Lecture Notes in Econom. and Math. Systems, Vol. 134. MR**0468130****[5]**Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz,*Variational iterative methods for nonsymmetric systems of linear equations*, SIAM J. Numer. Anal.**20**(1983), no. 2, 345–357. MR**694523**, https://doi.org/10.1137/0720023**[6]**H. C. Elman,*Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations*, Ph.D. Thesis, Computer Science Dept., Yale University, 1982.**[7]**David M. Young and Kang C. Jea,*Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods*, Linear Algebra Appl.**34**(1980), 159–194. MR**591431**, https://doi.org/10.1016/0024-3795(80)90165-2**[8]**M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655****[9]**D. G. Luenberger,*Introduction to Linear and Nonlinear Programming*, Addison-Wesley, Reading, Mass., 1965.**[10]**Y. Saad,*Krylov subspace methods for solving large unsymmetric linear systems*, Math. Comp.**37**(1981), no. 155, 105–126. MR**616364**, https://doi.org/10.1090/S0025-5718-1981-0616364-6**[11]**Y. Saad,*The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems*, SIAM J. Numer. Anal.**19**(1982), no. 3, 485–506. MR**656464**, https://doi.org/10.1137/0719031**[12]**Youcef Saad,*Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems*, SIAM J. Sci. Statist. Comput.**5**(1984), no. 1, 203–228. MR**731892**, https://doi.org/10.1137/0905015**[13]**Y. Saad & M. H. Schultz,*GMRES*:*A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems*, Technical Report #254, Yale University, 1983.**[14]**P. K. W. Vinsome, "ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear equations," in*Proc. Fourth Symposium on Reservoir Simulation*, Society of Petroleum Engineers of AIME, 1976, pp. 149-159.**[15]**Olof Widlund,*A Lanczos method for a class of nonsymmetric systems of linear equations*, SIAM J. Numer. Anal.**15**(1978), no. 4, 801–812. MR**0483345**, https://doi.org/10.1137/0715053

Retrieve articles in *Mathematics of Computation*
with MSC:
65F10,
65N20

Retrieve articles in all journals with MSC: 65F10, 65N20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777273-9

Article copyright:
© Copyright 1985
American Mathematical Society