On polynomial approximation in the complex plane with application to conformal mapping

Author:
Lothar Reichel

Journal:
Math. Comp. **44** (1985), 425-433

MSC:
Primary 30E10; Secondary 30C30, 41A10

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777274-0

MathSciNet review:
777274

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the selection of polynomial bases for polynomial approximation of analytic functions on bounded simply connected regions in the complex plane. While a monomial basis may be very ill-conditioned, we show that a basis of Lagrange polynomials with Fejér points as nodes is well-conditioned. Numerical examples, where we compute polynomial approximations of conformal mappings, conclude the paper.

**[1]**M. O. Afolabi and K. O. Geddes,*Near-minimax interpolation of analytic functions on regular polygons*, Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1977) Congress. Numer., XX, Utilitas Math., Winnipeg, Man., 1978, pp. 163–176. MR**535008****[2]**J. H. Curtiss,*Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points*, Duke Math. J.**32**(1965), 187–204. MR**0210902****[3]**S. W. Ellacott,*A technique for approximate conformal mapping*, Multivariate approximation (Sympos., Univ. Durham, Durham, 1977) Academic Press, London-New York, 1978, pp. 301–314. MR**525882****[4]**G. H. Elliott,*The Construction of Chebyshev Approximation in the Complex Plane*, Thesis, University of London, 1979.**[5]**Dieter Gaier,*Integralgleichungen erster Art und konforme Abbildung*, Math. Z.**147**(1976), no. 2, 113–129. MR**0396926**, https://doi.org/10.1007/BF01164277**[6]**Dieter Gaier,*Vorlesungen über Approximation im Komplexen*, Birkhäuser Verlag, Basel-Boston, Mass., 1980 (German). MR**604011****[7]**Walter Gautschi,*The condition of orthogonal polynomials*, Math. Comp.**26**(1972), 923–924. MR**0313558**, https://doi.org/10.1090/S0025-5718-1972-0313558-9**[8]**Walter Gautschi,*Questions of numerical conditions related to polynomials*, Recent advances in numerical analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 41, Academic Press, New York-London, 1978, pp. 45–72. MR**519056****[9]**Walter Gautschi,*The condition of polynomials in power form*, Math. Comp.**33**(1979), no. 145, 343–352. MR**514830**, https://doi.org/10.1090/S0025-5718-1979-0514830-6**[10]**K. O. Geddes,*Chebyshev nodes for interpolation on a class of ellipses*, Theory of approximation, with applications (Proc. Conf., Univ. Calgary, Calgary, Alta., 1975; dedicated to the memory of Eckard Schmidt), Academic Press, New York, 1976, pp. 155–170. MR**0422625****[11]**K. O. Geddes and J. C. Mason,*Polynomial approximation by projections on the unit circle*, SIAM J. Numer. Anal.**12**(1975), 111–120. MR**0364977**, https://doi.org/10.1137/0712011**[12]**H. Kober,*Dictionary of conformal representations*, Dover Publications, Inc., New York, N. Y., 1952. MR**0049326****[13]**D. Levin, N. Papamichael, and A. Sideridis,*The Bergman kernel method for the numerical conformal mapping of simply connected domains*, J. Inst. Math. Appl.**22**(1978), no. 2, 171–187. MR**509155****[14]**J. C. Mason,*Recent advances in near-best approximation*, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 629–636. MR**602779****[15]**Lothar Reichel,*On the determination of boundary collocation points for solving some problems for the Laplace operator*, J. Comput. Appl. Math.**11**(1984), no. 2, 175–196. MR**765969**, https://doi.org/10.1016/0377-0427(84)90019-0**[16]**Lothar Reichel,*A fast method for solving certain integral equations of the first kind with application to conformal mapping*, J. Comput. Appl. Math.**14**(1986), no. 1-2, 125–142. Special issue on numerical conformal mapping. MR**829034**, https://doi.org/10.1016/0377-0427(86)90134-2

Retrieve articles in *Mathematics of Computation*
with MSC:
30E10,
30C30,
41A10

Retrieve articles in all journals with MSC: 30E10, 30C30, 41A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777274-0

Keywords:
Polynomial approximation,
polynomial basis,
numerical condition,
conformal mapping

Article copyright:
© Copyright 1985
American Mathematical Society