Rational approximations for the Fresnel integrals

Author:
Mark A. Heald

Journal:
Math. Comp. **44** (1985), 459-461

MSC:
Primary 65D30

Corrigendum:
Math. Comp. **46** (1986), 771.

Corrigendum:
Math. Comp. **46** (1986), 771.

MathSciNet review:
777277

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of simple rational polynomial approximations for the Fresnel integrals is given with maximum errors from down to . The domain is not subdivided. The format is particularly convenient for programmable hand calculators and microcomputer subroutines.

**[1]**M. Abramowitz & I. A. Stegun, Editors,*Handbook of Mathematical Functions*, Dover, New York, 1965. See §§7.3.32-33 and Tables 7.7-8.**[2]**J. Boersma,*Computation of Fresnel integrals*, Math. Comp.**14**(1960), 380. MR**0121973**, 10.1090/S0025-5718-1960-0121973-3**[3]**W. J. Cody,*Chebyshev approximations for the Fresnel integrals*, Math. Comp. 22 (1968), 450-453; suppl., ibid.**22**(1968), no. 102, loose microfiche suppl., A1-B4. MR**0238469**, 10.1090/S0025-5718-68-99871-2**[4]**C. Hastings, Jr., "Approximations for calculating Fresnel integrals,"*Math. Comp.*[*MTAC*], v. 10, 1956, p. 173.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777277-6

Keywords:
Rational Chebyshev approximations,
Fresnel integrals

Article copyright:
© Copyright 1985
American Mathematical Society