Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let \(N > 1 \). We present a method for multiplying two integers (called \(N \)-residues) modulo \(N \) while avoiding division by \(N \). \(N \)-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one \(N \). The addition and subtraction algorithms are unchanged.

1. Description. Some algorithms \cite{1}, \cite{2}, \cite{4}, \cite{5} require extensive modular arithmetic. We propose a representation of residue classes so as to speed modular multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in \cite{3}, \cite{6}.

Fix \(N > 1 \). Define an \(N \)-residue to be a residue class modulo \(N \). Select a radix \(R \) coprime to \(N \) (possibly the machine word size or a power thereof) such that \(R > N \) and such that computations modulo \(R \) are inexpensive to process. Let \(R^{-1} \) and \(N' \) be integers satisfying \(0 < R^{-1} < N \) and \(0 < N' < R \) and \(RR^{-1} \equiv NN' = 1 \).

For \(0 < i < N \), let \(i \) represent the residue class containing \(iR^{-1} \mod N \). This is a complete residue system. The rationale behind this selection is our ability to quickly compute \(TR^{-1} \mod N \) from \(T \) if \(0 \leq T < RN \), as shown in Algorithm REDC:

\begin{verbatim}
function REDC(T)
 m ← \((T \mod R)N' \mod R\) [so \(0 \leq m < R \)]
 t ← \((T + mN)/R\)
 if \(t \geq N \) then return \(t - N \) else return \(t \)
end
\end{verbatim}

To validate REDC, observe \(mN \equiv T N'N \equiv -T \mod R \), so \(t \) is an integer. Also, \(tR \equiv T \mod N \) so \(t \equiv TR^{-1} \mod N \). Thirdly, \(0 \leq T + mN < RN + RN \), so \(0 \leq t < 2N \).

If \(R \) and \(N \) are large, then \(T + mN \) may exceed the largest double-precision value. One can circumvent this by adjusting \(m \) so \(-R < m \leq 0\).

Given two numbers \(x \) and \(y \) between \(0 \) and \(N - 1 \) inclusive, let \(z = REDC(xy) \). Then \(z \equiv (xy)R^{-1} \mod N \), so \((xR^{-1})(yR^{-1}) \equiv zR^{-1} \mod N \). Also, \(0 \leq z < N \), so \(z \) is the product of \(x \) and \(y \) in this representation.

Other algorithms for operating on \(N \)-residues in this representation can be derived from the algorithms normally used. The addition algorithm is unchanged, since \(xR^{-1} + yR^{-1} \equiv zR^{-1} \mod N \) if and only if \(x + y \equiv z \mod N \). Also unchanged are

Received December 19, 1983.
1980 Mathematics Subject Classification. Primary 10A30; Secondary 68C05.
Key words and phrases. Modular arithmetic, multiplication.

©1985 American Mathematical Society
0025-5718/85 $1.00 + $.25 per page
the algorithms for subtraction, negation, equality/inequality test, multiplication by an integer, and greatest common divisor with N.

To convert an integer x to an -residue, compute xR mod N. Equivalently, compute REDC((x mod N)(R^2 mod N)). Constants and inputs should be converted once, at the start of an algorithm. To convert an -residue to an integer, pad it with leading zeros and apply Algorithm REDC (thereby multiplying it by R^-1 mod N).

To invert an -residue, observe (xR^-1)^-1 ≡ zR^-1 mod N if and only if z ≡ R^2x^-1 mod N. For modular division, observe (xR^-1)(yR^-1)^-1 ≡ zR^-1 mod N if and only if z ≡ x(REDC(y))^-1 mod N.

The Jacobi symbol algorithm needs an extra negation if (R/N) = -1, since (xR^-1/N) = (x/N)(R/N).

Let M|N. A change of modulus from N (using R = R(N)) to M (using R = R(M)) proceeds normally if R(M) = R(N). If R(M) ≠ R(N), multiply each -residue by (R(N)/R(M))^-1 mod N during the conversion.

2. Multiprecision Case. If N and R are multiprecision, then the computations of m and mN within REDC involve multiprecision arithmetic. Let b be the base used for multiprecision arithmetic, and assume R = b^n, where n > 0. Let T = (T_{2n-1}T_{2n-2} \cdots T_0)_b, satisfy 0 ≤ T < RN. We can compute TR^-1 mod N with n single-precision multiplications modulo R, n multiplications of single-precision integers by N, and some additions:

```
c ← 0
for i := 0 step 1 to n - 1 do
  (dT_{i+n-1} \cdots T_i)_b ← (0T_{i+n-1} \cdots T_i)_b + N*(T_iN\mod R)
  (cT_{i+n})_b ← c + d + T_{i+n}
  [T is a multiple of b^{i+1}]
  [T + cb^{i+n+1} is congruent mod N to the original T]
  [0 ≤ T < (R + b^i)N]
end for
if (cT_{2n-1} \cdots T_n)_b ≥ N then
  return (cT_{2n-1} \cdots T_n)_b - N
else
  return (T_{2n-1} \cdots T_n)_b
end if
```

Here variable c represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software. A hardware implementation can use a variation of these ideas to overlap the multiplication and reduction phases. Suppose R = 2^n and N is odd. Let x = (x_{n-1}x_{n-2} \cdots x_0)_2, where each x_i is 0 or 1. Let 0 ≤ y < N. To compute xyR^-1 mod N, set S_0 = 0 and S_{i+1} to (S_i + x_iy)/2 or (S_i + x_iy + N)/2, whichever is an integer, for i = 0, 1, 2, \ldots, n - 1. By induction, 2S_i = (x_{i-1} \cdots x_0)y mod N and 0 ≤ S_i < N + y < 2N. Therefore xyR^-1 mod N is either S_n or S_n - N.