Steiner triple systems of order

Authors:
D. R. Stinson and H. Ferch

Journal:
Math. Comp. **44** (1985), 533-535

MSC:
Primary 05B07

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777284-3

MathSciNet review:
777284

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a hill-climbing algorithm, we construct 2117600 Steiner triple systems of order 19. These are tested for isomorphism by means of invariants, and 2111276 are shown to be nonisomorphic.

**[1]**S. Bays, "Recherche des systèmes cycliques de triples de Steiner différents pour*N*premier (ou puissance de nombre premier) de la forme ,"*J. Math. Pures Appl.*(9), v. 2, 1923, pp. 73-98.**[2]**R. Deherder,*Recouvrements*, Thesis, Université Libre de Bruxelles, 1976, 212 pp.**[3]**R. H. F. Denniston,*Nonisomorphic reverse Steiner triple systems of order 19*, Ann. Discrete Math.**7**(1980), 255–264. Topics on Steiner systems. MR**584416****[4]**T. P. Kirkman, "On a problem in combinations,"*Cambridge and Dublin Math. J.*, v. 2, 1847, 191-204.**[5]**Kevin T. Phelps and Alexander Rosa,*Steiner triple systems with rotational automorphisms*, Discrete Math.**33**(1981), no. 1, 57–66. MR**597228**, https://doi.org/10.1016/0012-365X(81)90258-2**[6]**Alan R. Prince,*Steiner triple systems of order 19 constructed from the Steiner triple system of order 9*, Proc. Roy. Soc. Edinburgh Sect. A**94**(1983), no. 1-2, 89–92. MR**700503**, https://doi.org/10.1017/S0308210500016164**[7]**Robert W. Quackenbush,*Algebraic speculations about Steiner systems*, Ann. Discrete Math.**7**(1980), 25–35. Topics on Steiner systems. MR**584401****[8]**G. A. F. Seber,*The estimation of animal abundance and related parameters*, 2nd ed., Macmillan, Inc., New York, 1982. MR**686755****[9]**D. R. Stinson,*Hill-climbing algorithms for the construction of combinatorial designs*, Algorithms in combinatorial design theory, North-Holland Math. Stud., vol. 114, North-Holland, Amsterdam, 1985, pp. 321–334. MR**833797**, https://doi.org/10.1016/S0304-0208(08)72988-8**[10]**D. R. Stinson,*A comparison of two invariants for Steiner triple systems: fragments and trains*, Ars Combin.**16**(1983), 69–76. MR**734047****[11]**D. R. Stinson & E. Seah, "284457 Steiner triple systems of order 19 contain a subsystem of order 9." (Preprint)**[12]**Richard M. Wilson,*Nonisomorphic Steiner triple systems*, Math. Z.**135**(1973/74), 303–313. MR**0340046**, https://doi.org/10.1007/BF01215371

Retrieve articles in *Mathematics of Computation*
with MSC:
05B07

Retrieve articles in all journals with MSC: 05B07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777284-3

Article copyright:
© Copyright 1985
American Mathematical Society