A multigrid version of a simple finite element method for the Stokes problem

Authors:
Juhani Pitkäranta and Tuomo Saarinen

Journal:
Math. Comp. **45** (1985), 1-14

MSC:
Primary 65N20; Secondary 65N30, 65N50, 76-08

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790640-2

MathSciNet review:
790640

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a finite element method for the Stokes problem on a rectangular domain based on piecewise bilinear velocities and piecewise constant pressures on a uniform rectangular grid. It is shown that by a simple stabilization strategy the method can be implemented in a convergent multigrid procedure.

**[1]**O. Axelsson, "Solution of linear systems of equations: iterative methods," in*Sparse Matrix Techniques*, Lecture Notes in Math., Vol. 572 (V. A. Barker, ed.), Springer-Verlag, Berlin and New York, 1977. MR**0448834 (56:7139)****[2]**I. Babuška, "Error bounds for finite element methods,"*Numer. Math.*, v. 16, 1971, pp. 322-333. MR**0288971 (44:6166)****[3]**I. Babuška, J. Osborn & J. Pitkäranta, "Analysis of mixed methods using mesh dependent norms,"*Math. Comp.*, v. 35, 1980, pp. 1039-1062. MR**583486 (81m:65166)****[4]**R. E. Bank & T. Dupont, "An optimal order process for solving elliptic finite element equations,"*Math. Comp.*, v. 36, 1981, pp. 35-51. MR**595040 (82b:65113)****[5]**F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers,"*RAIRO Ser. Rouge*, v. 8, no. R2, 1974, pp. 129-151. MR**0365287 (51:1540)****[6]**M. Crouzeix & P.-A. Raviart, "Conforming and nonconforming finite element methods for solving the stationary Stokes equations,"*RAIRO Ser. Rouge*, v. 7, no. R3, 1973, pp. 33-76. MR**0343661 (49:8401)****[7]**V. Girault & P.-A. Raviart,*Finite Element Approximation of the Navier-Stokes Equations*, Lecture Notes in Math., Vol. 749, Springer-Verlag, Berlin and New York, 1979. MR**548867 (83b:65122)****[8]**W. Hackbusch,*Analysis and Multigrid Solutions of Mixed Finite Element and Mixed Difference Equations*, Preprint, Universität Bochum, 1980.**[9]**T. J. Hughes, W. K. Liu & A. Brooks, "Finite element analysis of incompressible viscous flows by the penalty function formulation,"*J. Comput. Phys.*, v. 30, 1979, pp. 1-60. MR**524162 (80b:76008)****[10]**C. Johnson & J. Pitkäranta, "Analysis of some mixed finite element methods related to reduced integration,"*Math. Comp.*, v. 38, 1982, pp. 375-400. MR**645657 (83d:65287)****[11]**J. Pitkäranta, "On a mixed finite element method for the Stokes problem in ,"*RAIRO Anal. Numér.*, v. 16, 1982, pp. 275-291.**[12]**J. Pitkäranta & R. Stenberg,*Error Bounds for the Approximation of the Stokes Problem Using Bilinear/Constant Elements on Irregular Quadrilateral Meshes*, Proceedings of the MAFELAP-1984 conference. (To appear.)**[13]**K. Stüben & U. Trottenberg, "Multigrid methods: fundamental algorithms, model problem analysis and applications," in*Multigrid Methods*, Lecture Notes in Math., Vol. 960 (W. Hackbusch & U. Trottenberg, eds), Springer-Verlag, Berlin and New York, 1982. MR**685773 (84m:65129)****[14]**R. Verfürth,*A Multilevel Algorithm for Mixed Problems*, Preprint, Universität Bochum, 1982.**[15]**J. M. Boland & R. A. Nicolaides,*Stable and Semistable Low Order Finite Elements for Viscous Flows*, Preprint, University of Connecticut, 1983. MR**787571 (86m:65139)****[16]**A. Brandt & N. Dinar, "Multigrid solutions to elliptic flow problems," in*Numerical Methods for Partial Differential Equations*(S. V. Parter, ed.), Academic Press, New York, 1979. MR**558216 (81a:65094)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N20,
65N30,
65N50,
76-08

Retrieve articles in all journals with MSC: 65N20, 65N30, 65N50, 76-08

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790640-2

Article copyright:
© Copyright 1985
American Mathematical Society