A linearly implicit finite-difference scheme for the one-dimensional porous medium equation

Author:
David Hoff

Journal:
Math. Comp. **45** (1985), 23-33

MSC:
Primary 65M15; Secondary 76S05

MathSciNet review:
790642

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present and analyze a linearly implicit finite-difference scheme for computing approximate solutions and interface curves for the porous medium equation in one space variable. Our scheme requires only that linear, tridiagonal systems of equations be solved at each time step. We derive error bounds for the approximate interface curves as well as for the approximate solutions under the rather mild mesh condition .

**[1]**D. G. Aronson,*Regularity propeties of flows through porous media*, SIAM J. Appl. Math.**17**(1969), 461–467. MR**0247303****[2]**D. G. Aronson,*Regularity properties of flows through porous media: The interface.*, Arch. Rational Mech. Anal.**37**(1970), 1–10. MR**0255996****[3]**D. G. Aronson,*Regularity properties of flows through porous media: A counterexample.*, SIAM J. Appl. Math.**19**(1970), 299–307. MR**0265774****[4]**Donald G. Aronson and Philippe Bénilan,*Régularité des solutions de l’équation des milieux poreux dans 𝑅^{𝑁}*, C. R. Acad. Sci. Paris Sér. A-B**288**(1979), no. 2, A103–A105 (French, with English summary). MR**524760****[5]**E. DiBenedetto and David Hoff,*An interface tracking algorithm for the porous medium equation*, Trans. Amer. Math. Soc.**284**(1984), no. 2, 463–500. MR**743729**, 10.1090/S0002-9947-1984-0743729-3**[6]**J. L. Graveleau and P. Jamet,*A finite difference approach to some degenerate nonlinear parabolic equations*, SIAM J. Appl. Math.**20**(1971), 199–223. MR**0290600****[7]**S. N. Kružkov, "Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications,"*Math. Notes*, v. 6, no. 1, 1969, pp. 517-523.**[8]**Kenji Tomoeda and Masayasu Mimura,*Numerical approximations for interface curves to a porous media equation*, Computational and asymptotic methods for boundary and interior layers (Dublin, 1982) Boole Press Conf. Ser., vol. 4, Boole, Dún Laoghaire, 1982, pp. 405–410. MR**737598****[9]**O. A. Oleĭnik, A. S. Kalašinkov, and Yuĭ-Lin′ Čžou,*The Cauchy problem and boundary problems for equations of the type of non-stationary filtration*, Izv. Akad. Nauk SSSR. Ser. Mat.**22**(1958), 667–704 (Russian). MR**0099834****[10]**M. Muskat,*The Flow of Homogeneous Fluids Through Porous Media*, McGraw-Hill, New York, 1937.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M15,
76S05

Retrieve articles in all journals with MSC: 65M15, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790642-6

Article copyright:
© Copyright 1985
American Mathematical Society