On the asymptotic convergence of collocation methods with spline functions of even degree

Authors:
J. Saranen and W. L. Wendland

Journal:
Math. Comp. **45** (1985), 91-108

MSC:
Primary 65N99; Secondary 35S99

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790646-3

MathSciNet review:
790646

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the collocation of linear one-dimensional strongly elliptic integro-differential or, more generally, pseudo-differential equations on closed curves by even-degree polynomial splines. The equations are collocated at the respective midpoints subject to uniform nodal grids of the even-degree *B*-splines. We prove quasioptimal and optimal order asymptotic error estimates in a scale of Sobolev spaces. The results apply, in particular, to boundary element methods used for numerical computations in engineering applications. The equations considered include Fredholm integral equations of the second and the first kind, singular integral equations involving Cauchy kernels, and integro-differential equations having convolutional or constant coefficient principal parts, respectively.

The error analysis is based on an equivalence between the collocation and certain variational methods with different degree splines as trial and as test functions. We further need to restrict our operators essentially to pseudo-differential operators having convolutional principal part. This allows an explicit Fourier analysis of our operators as well as of the spline spaces in terms of trigonometric polynomials providing Babuška's stability condition based on strong ellipticity.

Our asymptotic error estimates extend partly those obtained by D. N. Arnold and W. L. Wendland from the case of odd-degree splines to the case of even-degree splines.

**[1]**M. S. Abou El-Seoud,*Numerische Behandlung von schwach singulären Integralgleichungen erster Art*, Doctoral Dissertation, Technische Hochschule Darmstadt, Germany, 1979.**[2]**M. S. Abou El-Seoud,*Kollokationsmethode für schwach singuläre Integralgleichungen erster Art*, Z. Angew. Math. Mech.**59**(1979), no. 3, T45–T47 (German). Vorträge der Wissenschaftlichen Jahrestagung der Gesellschaft für Angewandte Mathematik und Mechanik, Teil I (Brussels, 1978). MR**533975****[3]**M. S. Agranovič,*Elliptic singular integro-differential operators*, Uspehi Mat. Nauk**20**(1965), no. 5 (125), 3–120 (Russian). MR**0198017****[4]**M. S. Agranovič,*Spectral properties of elliptic pseudodifferential operators on a closed curve*, Funktsional. Anal. i Prilozhen.**13**(1979), no. 4, 54–56 (Russian). MR**554412****[5]**M. A. Aleksidze,*\cyr Reshenie granichnykh zadach metodom razlozheniya po neortogonal′nym funktsiyam*, “Nauka”, Moscow, 1978 (Russian). MR**527813****[6]**Philip M. Anselone,*Collectively compact operator approximation theory and applications to integral equations*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR**0443383****[7]**Douglas N. Arnold and Wolfgang L. Wendland,*On the asymptotic convergence of collocation methods*, Math. Comp.**41**(1983), no. 164, 349–381. MR**717691**, https://doi.org/10.1090/S0025-5718-1983-0717691-6**[8]**Kendall E. Atkinson,*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585****[9]**Jean-Pierre Aubin,*Approximation of elliptic boundary-value problems*, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. Pure and Applied Mathematics, Vol. XXVI. MR**0478662****[10]**Ivo Babuška and A. K. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**0421106****[11]**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****[12]**J. L. Blue,*Boundary integral solutions of Laplace’s equation*, Bell System Tech. J.**57**(1978), no. 8, 2797–2822. MR**508234**, https://doi.org/10.1002/j.1538-7305.1978.tb02177.x**[13]**G. Bruhn & W. L. Wendland, "Über die näherungsweise Lösung von linearen Funktionalgleichungen,"*Funktionalanalysis, Approximationstheorie, Numerische Mathematik*(L. Collatz, ed.),*Intern. Ser. Num. Math.*, v. 7, Birkhäuser, Basel, 1967, pp. 136-144.**[14]**Søren Christiansen,*Numerical solution of an integral equation with a logarithmic kernel*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 276–287. MR**0300481****[15]**M. Djaoua,*A method of calculation of lifting flows around 2-dimensional corner-shaped bodies*, Math. Comp.**36**(1981), no. 154, 405–425. MR**606504**, https://doi.org/10.1090/S0025-5718-1981-0606504-7**[16]**M. Durand,*Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle*, Math. Methods Appl. Sci.**5**(1983), no. 3, 389–421. MR**716663**, https://doi.org/10.1002/mma.1670050126**[17]**P. J. T. Filippi, "Layer potentials and acoustic diffraction,"*Sound Vibration*, v. 54, 1977, pp. 473-500.**[18]**J. Giroire and J.-C. Nédélec,*Numerical solution of an exterior Neumann problem using a double layer potential*, Math. Comp.**32**(1978), no. 144, 973–990. MR**0495015**, https://doi.org/10.1090/S0025-5718-1978-0495015-8**[19]**John K. Hayes, David K. Kahaner, and Richard G. Kellner,*An improved method for numerical conformal mapping*, Math. Comp.**26**(1972), 327–334; suppl., ibid. 26 (1972), no. 118, loose microfiche suppl. A1–B14. MR**0301176**, https://doi.org/10.1090/S0025-5718-1972-0301176-8**[20]**G. C. Hsiao, P. Kopp, and W. L. Wendland,*A Galerkin collocation method for some integral equations of the first kind*, Computing**25**(1980), no. 2, 89–130 (English, with German summary). MR**620387**, https://doi.org/10.1007/BF02259638**[21]**George C. Hsiao and Wolfgang L. Wendland,*A finite element method for some integral equations of the first kind*, J. Math. Anal. Appl.**58**(1977), no. 3, 449–481. MR**0461963**, https://doi.org/10.1016/0022-247X(77)90186-X**[22]**G. C. Hsiao and W. L. Wendland,*The Aubin-Nitsche lemma for integral equations*, J. Integral Equations**3**(1981), no. 4, 299–315. MR**634453****[23]**J. L. Lions & E. Magenes,*Non-Homogeneous Boundary Value Problems and Applications*I, Springer-Verlag, Berlin and New York, 1972.**[24]**S. G. Michlin & S. Prössdorf,*Singuläre Integraloperatoren*, Akademie-Verlag, Berlin, 1980.**[25]**N. I. Muskhelishvili,*Singular integral equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR**0355494****[26]**G. G. Mustoe & I. C. Mathews,*Direct Boundary Integral Methods, Point Collocation and Variational Procedures*, Preprint, Univ. Coll. Swansea, U.K., 1982.**[27]**P. M. Prenter,*A collection method for the numerical solution of integral equations*, SIAM J. Numer. Anal.**10**(1973), 570–581. MR**0327064**, https://doi.org/10.1137/0710051**[28]**J. Saranen & W. L. Wendland, "The Fourier series representation of pseudo-differential operators on closed curves,"*Complex Variables*. (To appear.)**[29]**G. Schmidt,*On spline collocation for singular integral equations*, Math. Nachr.**111**(1983), 177–196. MR**725777**, https://doi.org/10.1002/mana.19831110108**[30]**R. Seeley,*Topics in pseudo-differential operators*, Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR**0259335****[31]**G. T. Symm,*Integral equation methods in potential theory. II*, Proc. Roy. Soc. Ser. A**275**(1963), 33–46. MR**0154076****[32]**François Trèves,*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. MR**597145****[33]**V. V. Voronin and V. A. Cecoho,*An interpolation method for the solution of an integral equation of the first kind with a logarithmic singularity*, Dokl. Akad. Nauk SSSR**216**(1974), 1209–1211 (Russian). MR**0487361****[34]**J. O. Watson, "Advanced implementation of the boundary element method for two- and three-dimensional elastostatics,"*Developments in Boundary Element Methods*-1 (P. K. Banerjee and R. Butterfield, eds.), Appl. Sci. Publ. TLD, London, 1979, pp. 31-63.**[35]**W. L. Wendland,*Boundary element methods and their asymptotic convergence*, Theoretical acoustics and numerical techniques, CISM Courses and Lect., vol. 277, Springer, Vienna, 1983, pp. 135–216. MR**762829**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N99,
35S99

Retrieve articles in all journals with MSC: 65N99, 35S99

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790646-3

Article copyright:
© Copyright 1985
American Mathematical Society