Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A general equivalence theorem in the theory of discretization methods


Authors: J. M. Sanz-Serna and C. Palencia
Journal: Math. Comp. 45 (1985), 143-152
MSC: Primary 65J10; Secondary 65M10, 65N10
MathSciNet review: 790648
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Lax-Richtmyer theorem is extended to work in the framework of Stetter's theory of discretizations. The new result applies to both initial and boundary value problems discretized by finite elements, finite differences, etc. Several examples are given, together with a comparison with other available equivalence theorems. The proof relies on a generalized Banach-Steinhaus theorem.


References [Enhancements On Off] (What's this?)

  • [1] R. Ansorge, Survey of equivalence theorems in the theory of difference approximations for partial initial value problems, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London-New York, 1977, pp. 1–16. MR 513198
  • [2] Rainer Ansorge, Differenzenapproximationen partieller Anfangswertaufgaben, Leitfäden der Angewandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics], vol. 45, B. G. Teubner, Stuttgart, 1978 (German). Teubner Studienbücher Mathematik. MR 513022
  • [3] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [4] Germund Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand. 4 (1956), 33–53. MR 0080998
  • [5] Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 0135729
  • [6] P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9 (1956), 267–293. MR 0079204
  • [7] J. K. Mountain, The Lax equivalence theorem for linear, inhomogeneous equations in 𝐿² spaces, J. Approx. Theory 33 (1981), no. 2, 126–130. MR 643908, 10.1016/0021-9045(81)90082-4
  • [8] C. Palencia and J. M. Sanz-Serna, Equivalence theorems for incomplete spaces: an appraisal, IMA J. Numer. Anal. 4 (1984), no. 1, 109–115. MR 740788, 10.1093/imanum/4.1.109
  • [9] C. Palencia and J. M. Sanz-Serna, An extension of the Lax-Richtmyer theory, Numer. Math. 44 (1984), no. 2, 279–283. MR 753959, 10.1007/BF01410111
  • [10] Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
  • [11] Marc Nico Spijker, Stability and convergence of finite-difference methods, Doctoral dissertation, University of Leiden, vol. 1968, Rijksuniversiteit te Leiden, Leiden, 1968 (English, with Dutch summary). MR 0239761
  • [12] R. Ansorge and W. Törnig (eds.), Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen, Lecture Notes in Mathematics, Vol. 395, Springer-Verlag, Berlin-New York, 1974 (German). Vorträge einer Tagung im Mathematischen Forschungsinstitut, Oberwolfach, 2.12–7.12. 1973. MR 0339442
  • [13] Hans J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol. 23. MR 0426438
  • [14] Friedrich Stummel, Diskrete Konvergenz linearer Operatoren. I, Math. Ann. 190 (1970/71), 45–92 (German). MR 0291870
  • [15] Friedrich Stummel, Weak stability and weak discrete convergence of continuous mappings, Numer. Math. 26 (1976), no. 3, 301–315. MR 0436578
  • [16] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1977.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65J10, 65M10, 65N10

Retrieve articles in all journals with MSC: 65J10, 65M10, 65N10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0790648-7
Article copyright: © Copyright 1985 American Mathematical Society