Boundary value techniques for initial value problems in ordinary differential equations

Authors:
A. O. H. Axelsson and J. G. Verwer

Journal:
Math. Comp. **45** (1985), 153-171, S1

MSC:
Primary 65L10; Secondary 65L05

MathSciNet review:
790649

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The numerical solution of initial value problems in ordinary differential equations by means of boundary value techniques is considered. We discuss a finite-difference method which was already investigated by Fox in 1954 and Fox and Mitchell in 1957. Hereby we concentrate on explaining the fundamentals of the method because for initial value problems the boundary value method seems to be fairly unknown. We further propose and discuss new Galerkin methods for initial value problems along the lines of the boundary value approach.

**[1]**Owe Axelsson,*Global integration of differential equations through Lobatto quadrature*, Nordisk Tidskr. Informations-Behandling**4**(1964), 69–86. MR**0166925****[2]**Owe Axelsson,*Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations*, Linear Algebra Appl.**29**(1980), 1–16. MR**562745**, 10.1016/0024-3795(80)90226-8**[3]**A. O. H. Axelsson and J. G. Verwer,*Boundary value techniques for initial value problems in ordinary differential equations*, Math. Comp.**45**(1985), no. 171, 153–171, S1–S4. MR**790649**, 10.1090/S0025-5718-1985-0790649-9**[4]**J. R. Cash,*Stable recursions*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York-Toronto, Ont., 1979. With applications to the numerical solution of stiff systems; Computational Mathematics and Applications. MR**570113****[5]**Germund Dahlquist,*Stability and error bounds in the numerical integration of ordinary differential equations*, Kungl. Tekn. Högsk. Handl. Stockholm. No.**130**(1959), 87. MR**0102921****[6]**K. Dekker and J. G. Verwer,*Stability of Runge-Kutta methods for stiff nonlinear differential equations*, CWI Monographs, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. MR**774402****[7]**M. Delfour, W. Hager, and F. Trochu,*Discontinuous Galerkin methods for ordinary differential equations*, Math. Comp.**36**(1981), no. 154, 455–473. MR**606506**, 10.1090/S0025-5718-1981-0606506-0**[8]**W. H. Enright, T. E. Hull & B. Lindberg, "Comparing numerical methods for stiff systems of ODEs,"*BIT*, v. 15, 1985, pp. 10-48.**[9]**L. Fox,*A note on the numerical integration of first-order differential equations*, Quart. J. Mech. Appl. Math.**7**(1954), 367–378. MR**0069591****[10]**L. Fox and A. R. Mitchell,*Boundary-value techniques for the numerical solution of initial-value problems in ordinary differential equations*, Quart. J. Mech. Appl. Math.**10**(1957), 232–243. MR**0093025****[11]**Louis A. Hageman and David M. Young,*Applied iterative methods*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. Computer Science and Applied Mathematics. MR**630192****[12]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[13]**Bernie L. Hulme,*Discrete Galerkin and related one-step methods for ordinary differential equations*, Math. Comp.**26**(1972), 881–891. MR**0315899**, 10.1090/S0025-5718-1972-0315899-8**[14]**Herbert B. Keller,*Numerical methods for two-point boundary-value problems*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR**0230476****[15]**Herbert B. Keller,*Numerical solution of two point boundary value problems*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied Mathematics, No. 24. MR**0433897****[16]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[17]**Peter Lancaster,*Theory of matrices*, Academic Press, New York-London, 1969. MR**0245579****[18]**F. W. J. Olver,*Numerical solution of second-order linear difference equations*, J. Res. Nat. Bur. Standards Sect. B**71B**(1967), 111–129. MR**0221789****[19]**F. W. J. Olver and D. J. Sookne,*Note on backward recurrence algorithms*, Math. Comp.**26**(1972), 941–947. MR**0331826**, 10.1090/S0025-5718-1972-0331826-1**[20]**L. Rolfes,*A Global Method for Solving Stiff Differential Equations*, NRIMS Special Report, TWISK 228, CSIR, NRIMS, Pretoria, 1981.**[21]**L. Rolfes & J. A. Snyman,*An Evaluation of a Global Method Applied to Stiff Ordinary Differential Equations*, preprint, University of Pretoria, 1982.**[22]**L. F. Shampine,*Solving ODE’s with discrete data in SPEAKEASY*, Recent advances in numerical analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 41, Academic Press, New York-London, 1978, pp. 177–192. MR**519062****[23]**Hans J. Stetter,*Analysis of discretization methods for ordinary differential equations*, Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol. 23. MR**0426438****[1]**AXELSSON, A.O.H. and J.G. VERWER,*Boundary value techniques for initial value problems in ordinary differential equations*, this issue.**[2]**O. Axelsson, L. S. Frank, and A. van der Sluis (eds.),*Analytical and numerical approaches to asymptotic problems in analysis*, North-Holland Mathematics Studies, vol. 47, North-Holland Publishing Co., Amsterdam-New York, 1981. MR**605494**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
65L05

Retrieve articles in all journals with MSC: 65L10, 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790649-9

Keywords:
Numerical analysis,
initial value problems for ordinary differential equations,
stiffness,
boundary value techniques

Article copyright:
© Copyright 1985
American Mathematical Society