Computation of the class number and class group of a complex cubic field

Authors:
G. Dueck and H. C. Williams

Journal:
Math. Comp. **45** (1985), 223-231

MSC:
Primary 11R16; Secondary 11R29, 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790655-4

Corrigendum:
Math. Comp. **50** (1988), 655-657.

MathSciNet review:
790655

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *h* and *G* be, respectively, the class number and the class group of a complex cubic field of discriminant . A method is described which makes use of recent ideas of Lenstra and Schoof to develop fast algorithms for finding *h* and *G*. Under certain Riemann hypotheses it is shown that these algorithms will compute *h* in elementary operations and *G* in elementary operations. Finally, the results of running some computer programs to determine *h* and *G* for all pure cubic fields , with , are summarized.

**[1]**B. N. Delone and D. K. Faddeev,*The theory of irrationalities of the third degree*, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR**0160744****[2]**H. Eisenbeis, G. Frey, and B. Ommerborn,*Computation of the 2-rank of pure cubic fields*, Math. Comp.**32**(1978), no. 142, 559–569. MR**0480416**, https://doi.org/10.1090/S0025-5718-1978-0480416-4**[3]**Veikko Ennola and Reino Turunen,*On totally real cubic fields*, Math. Comp.**44**(1985), no. 170, 495–518. MR**777281**, https://doi.org/10.1090/S0025-5718-1985-0777281-8**[4]**Donald E. Knuth,*The art of computer programming. Vol. 2*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**633878****[5]**J. C. Lagarias and A. M. Odlyzko,*Effective versions of the Chebotarev density theorem*, Algebraic number fields: 𝐿-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 409–464. MR**0447191****[6]**J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko,*A bound for the least prime ideal in the Chebotarev density theorem*, Invent. Math.**54**(1979), no. 3, 271–296. MR**553223**, https://doi.org/10.1007/BF01390234**[7]**R. Sherman Lehman,*Factoring large integers*, Math. Comp.**28**(1974), 637–646. MR**0340163**, https://doi.org/10.1090/S0025-5718-1974-0340163-2**[8]**H. W. Lenstra Jr.,*On the calculation of regulators and class numbers of quadratic fields*, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge, 1982, pp. 123–150. MR**697260****[9]**J. Oesterlé, "Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisée,"*Astérisque*, v. 61, 1979, pp. 165-167.**[10]**R. J. Schoof,*Quadratic fields and factorization*, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 235–286. MR**702519****[11]**Daniel Shanks,*Class number, a theory of factorization, and genera*, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR**0316385****[12]**Daniel Shanks,*The infrastructure of a real quadratic field and its applications*, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 217–224. MR**0389842****[13]**G. F. Voronoi,*Concerning Algebraic Integers Derivable from a Root of an Equation of the Third Degree*, Master's Thesis, St. Petersburg, 1894. (Russian)**[14]**G. F. Voronoi,*On a Generalization of the Algorithm of Continued Fractions*, Doctoral Dissertation, Warsaw, 1896. (Russian)**[15]**H. C. Williams, G. W. Dueck, and B. K. Schmid,*A rapid method of evaluating the regulator and class number of a pure cubic field*, Math. Comp.**41**(1983), no. 163, 235–286. MR**701638**, https://doi.org/10.1090/S0025-5718-1983-0701638-2**[16]**Hugh C. Williams,*Continued fractions and number-theoretic computations*, Rocky Mountain J. Math.**15**(1985), no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR**823273**, https://doi.org/10.1216/RMJ-1985-15-2-621**[17]**H. C. Williams and C. R. Zarnke,*Some algorithms for solving a cubic congruence modulo 𝑝*, Utilitas Math.**6**(1974), 285–306. MR**0389730**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R16,
11R29,
11Y40

Retrieve articles in all journals with MSC: 11R16, 11R29, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790655-4

Article copyright:
© Copyright 1985
American Mathematical Society