Long arithmetic progressions of primes: some old, some new

Author:
Paul A. Pritchard

Journal:
Math. Comp. **45** (1985), 263-267

MSC:
Primary 11B25; Secondary 11Y55

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790659-1

MathSciNet review:
790659

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The results are reported of an extensive search with a computer for "long" arithmetic progressions of primes. Such progressions with minimum last term are now known for all lengths up to and including nineteen.

**[1]**S. Chowla,*There exists an infinity of 3—combinations of primes in A. P*, Proc. Lahore Philos. Soc.**6**(1944), no. 2, 15–16. MR**0014125****[2]**Emil Grosswald,*Arithmetic progressions that consist only of primes*, J. Number Theory**14**(1982), no. 1, 9–31. MR**644898**, https://doi.org/10.1016/0022-314X(82)90055-5**[3]**Emil Grosswald and Peter Hagis Jr.,*Arithmetic progressions consisting only of primes*, Math. Comp.**33**(1979), no. 148, 1343–1352. MR**537981**, https://doi.org/10.1090/S0025-5718-1979-0537981-9**[4]**Richard K. Guy,*Unsolved problems in number theory*, Unsolved Problems in Intuitive Mathematics, vol. 1, Springer-Verlag, New York-Berlin, 1981. Problem Books in Mathematics. MR**656313****[5]**G. H. Hardy and J. E. Littlewood,*Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1923), no. 1, 1–70. MR**1555183**, https://doi.org/10.1007/BF02403921**[6]**D. R. Heath-Brown,*Three primes and an almost-prime in arithmetic progression*, J. London Math. Soc. (2)**23**(1981), no. 3, 396–414. MR**616545**, https://doi.org/10.1112/jlms/s2-23.3.396**[7]**R. F. Faĭziev,*The number of integers, expressible in the form of a sum of two primes, and the number of 𝑘-twin pairs*, Dokl. Akad. Nauk Tadžik. SSR**12**(1969), no. 2, 12–16 (Russian, with Tajiki summary). MR**0252345****[8]**E. Karst, "Lists of ten or more primes in arithmetical progressions,"*Scripta Math.*, v. 28, 1970, pp. 313-317.**[9]**Edgar Karst and S. C. Root,*Teilfolgen von Primzahlen in arithmetischer Progression*, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl.**1**(1972), 19–20. MR**0409326**

S. C. Root and Edgar Karst,*Mehr Teilfolgen von Primzahlen in arithmetischer Progression*, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl.**8**(1972), 178–179. MR**0409327****[10]**Paul A. Pritchard,*A case study of number-theoretic computation: searching for primes in arithmetic progression*, Sci. Comput. Programming**3**(1983), no. 1, 37–63. MR**730934**, https://doi.org/10.1016/0167-6423(83)90003-5**[11]**Paul A. Pritchard,*Eighteen primes in arithmetic progression*, Math. Comp.**41**(1983), no. 164, 697. MR**717714**, https://doi.org/10.1090/S0025-5718-1983-0717714-4**[12]**Sol Weintraub,*Primes in arithmetic progression*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 2, 239–243. MR**0491446****[13]**Sol Weintraub,*Seventeen primes in arithmetic progression*, Math. Comp.**31**(1977), no. 140, 1030. MR**0441849**, https://doi.org/10.1090/S0025-5718-1977-0441849-4

Retrieve articles in *Mathematics of Computation*
with MSC:
11B25,
11Y55

Retrieve articles in all journals with MSC: 11B25, 11Y55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0790659-1

Article copyright:
© Copyright 1985
American Mathematical Society