Finite difference approximations of generalized solutions

Authors:
Endre Süli, Boško Jovanović and Lav Ivanović

Journal:
Math. Comp. **45** (1985), 319-327

MSC:
Primary 65N05; Secondary 65N15

MathSciNet review:
804926

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider finite difference schemes approximating the Dirichlet problem for the Poisson equation. We provide scales of error estimates in discrete Sobolev-like norms assuming that the generalized solution belongs to a nonnegative order Sobolev space.

**[1]**J. H. Bramble and S. R. Hilbert,*Bounds for a class of linear functionals with applications to Hermite interpolation*, Numer. Math.**16**(1970/1971), 362–369. MR**0290524****[2]**F. Brezzi & D. Marini, "On the numerical solution of plate bending problems by hybrid methods,"*RAIRO Anal. Numér.*, v. 3, 1975, pp. 5-50.**[3]**Todd Dupont and Ridgway Scott,*Polynomial approximation of functions in Sobolev spaces*, Math. Comp.**34**(1980), no. 150, 441–463. MR**559195**, 10.1090/S0025-5718-1980-0559195-7**[4]**R. D. Lazarov,*On the question of the convergence of difference schemes for generalized solutions of the Poisson equation*, Differentsial′nye Uravneniya**17**(1981), no. 7, 1285–1294, 1344 (Russian). MR**625566****[5]**J. L. Lions & E. Magenes,*Non Homogeneous Boundary Value Problems and Applications*, Springer-Verlag, Berlin and New York, 1972.**[6]**Ju. I. Mokin,*A network analogue of the imbedding theorem for classes of type 𝑊*, Ž. Vyčisl. Mat. i Mat. Fiz.**11**(1971), 1361–1373 (Russian). MR**0300080****[7]**L. Schwartz,*Théorie des Distributions*, Vols. I, II, Hermann, Paris, 1950/1951.**[8]**H. Triebel,*Interpolation theory, function spaces, differential operators*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR**500580**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N05,
65N15

Retrieve articles in all journals with MSC: 65N05, 65N15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1985-0804926-6

Article copyright:
© Copyright 1985
American Mathematical Society