Accuracy bounds for semidiscretizations of hyperbolic problems

Authors:
Rolf Jeltsch and Klaus-Günther Strack

Journal:
Math. Comp. **45** (1985), 365-376

MSC:
Primary 65M20

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804929-1

MathSciNet review:
804929

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bounds are given for the error constant of stable finite-difference methods for first-order hyperbolic equations in one space dimension, which use *r* downwind and *s* upwind points in the discretization of the space derivatives, and which are of optimal order . It is known that this order can be obtained by interpolatory methods. Examples show, however, that their error constants can be improved.

**[1]**B. Engquist & S. Osher, "One-sided difference approximations for nonlinear conservation laws,"*Math. Comp.*, v. 36, 1981, pp. 321-351. MR**606500 (82c:65056)****[2]**E. Hairer, "Unconditionally stable methods for second order differential equations,"*Numer. Math.*, v. 32, 1979, pp. 373-379. MR**542200 (80f:65082)****[3]**P. Henrici,*Discrete Variable Methods in Ordinary Differential Equations*, Wiley, New York, 1961. MR**0135729 (24:B1772)****[4]**A. Iserles, "Order stars and a saturation theorem for first order hyperbolics,"*IMA J. Numer. Anal.*, v. 2, 1982, pp. 49-61. MR**654266 (83d:65253)****[5]**A. Iserles,*Order Stars, Approximation and Finite Differences*. I:*The General Theory of Order Stars*, Report DAMTP NA3, Univ. of Cambridge, 1983.**[6]**A. Iserles & G. Strang, "The optimal accuracy of difference schemes,"*Trans. Amer. Math. Soc.*, v. 277, 1983, pp. 779-803. MR**694388 (84f:65070)****[7]**R. Jeltsch & O. Nevanlinna, "Stability of explicit time discretizations for solving initial value problems,"*Numer. Math.*, v. 37, 1981, pp. 61-91. MR**615892 (82g:65042)****[8]**R. Jeltsch & O. Nevanlinna, "Stability and accuracy of time discretizations for initial value problems,"*Numer. Math.*, v. 40, 1982, pp. 245-296. MR**684186 (84c:65096)****[9]**R. Jeltsch & O. Nevanlinna, "Stability of semidiscretizations of hyperbolic problems,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 1210-1218. MR**723838 (85c:65102)****[10]**R. Richtmyer & K. Morton,*Difference Methods for Initial Value Problems*, 2nd ed., Wiley, New York, 1967. MR**0220455 (36:3515)****[11]**G. Strang, "Accurate partial difference methods. II: Nonlinear problems,"*Numer. Math.*, v. 6, 1964, pp. 37-44. MR**0166942 (29:4215)****[12]**G. Wanner, E. Hairer & S. P. Nørsett, "Order stars and stability theorems,"*BIT*, v. 18, 1978, pp. 475-489. MR**520756 (81b:65070)****[13]**G. Wanner, E. Hairer & S. P. Nørsett, "When*I*-stability implies*A*-stability,"*BIT*, v. 18, 1978, p. 503. MR**520761 (80b:65106)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M20

Retrieve articles in all journals with MSC: 65M20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804929-1

Article copyright:
© Copyright 1985
American Mathematical Society