Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Deformations of the bifurcation diagram due to discretization

Authors: J. Bigge and E. Bohl
Journal: Math. Comp. 45 (1985), 393-403
MSC: Primary 65L10; Secondary 58F14
MathSciNet review: 804931
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: With a singular perturbation problem occurring in chemical reaction processes, substantial changes of the bifurcation diagram due to discretization are demonstrated. It is shown that a discrete system can possess any number of solutions, whereas the underlying continuous problem has exactly one solution. In addition to that, there is no way to favor one of the various discrete solutions as the one approximating the continuous solution.

References [Enhancements On Off] (What's this?)

  • [1] E. Allgower, "On a discretization of $ y''+ \lambda {y^k} = 0$," in Proc. Conf. Roy. Irish Acad. (J. J. H. Miller, ed.), Academic Press, New York, 1975. MR 0428719 (55:1739)
  • [2] W.-J. Beyn, Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren, Habilitationsschrift, Universität Konstanz, 1981.
  • [3] W.-J. Beyn & J. Lorenz, "Spurious solutions for discrete superlinear boundary value problems," Computing, v. 28, 1982, pp. 43-51. MR 645968 (83b:47069)
  • [4] J. Bigge, Lösungsweige von Diskretisierungen nichtlinearer Randwertaufgaben, Ph. D. Thesis, Universität Konstanz, 1984.
  • [5a] E. Bohl, "On the bifurcation diagram of discrete analogues for ordinary bifurcation problems," Math. Methods Appl. Sci., v. 1, 1979, pp. 566-671. MR 548689 (81g:65107)
  • [5b] E. Bohl, Finite Modelle gewöhnlicher Randwertaufgaben, LAMM-51, Teubner-Verlag, Stuttgart, 1981. MR 633643 (83g:65080)
  • [6] H. B. Keller, "Some positone problems suggested by nonlinear heat generation," in Bifurcation Theory and Nonlinear Eigenvalue Problems (J. B. Keller and S. Antman, eds.), Benjamin, New York, 1969. MR 0241213 (39:2555)
  • [7] J.-P. Kernevez, Enzyme Mathematics, Stud. Math. Appl., vol. 10, North-Holland, Amsterdam, 1980. MR 594596 (82e:92013)
  • [8] J.-P. Kernevez & D. Thomas, "Numerical analysis of some biochemical systems," Appl. Math. Optim., v. 1, 1975, pp. 222-285. MR 0403716 (53:7527)
  • [9] H. W. Knobloch, "Second order differential inequalities and a nonlinear boundary value problem," J. Differential Equations, v. 5, 1969, pp. 55-71. MR 0234056 (38:2375)
  • [10] B. Kreiss & H.-O. Kreiss, "Numerical methods for singular perturbation problems," SIAM J. Numer. Anal., v. 18, 1981, pp. 262-276. MR 612142 (82e:65088)
  • [11] J. D. Murray, Lectures on Nonlinear-Differential-Equation Models in Biology, Clarendon Press, Oxford, 1977.
  • [12] J. W. Milnor, Topology From the Differentiable Viewpoint, University Press of Virginia, Charlottesville, 1965. MR 0226651 (37:2239)
  • [13] H. O. Peitgen, D. Saupe & K. Schmitt, "Nonlinear elliptic boundary value problems versus their finite difference approximations: Numerically irrelevant solutions," J. Reine Angew. Math., v. 322, 1981, pp. 74-117. MR 603027 (82h:65076)
  • [14] D. Sattinger, "Monotone methods in nonlinear elliptic and parabolic boundary value problems." Indiana Univ. Math. J., v. 21, 1972, pp. 979-1000. MR 0299921 (45:8969)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L10, 58F14

Retrieve articles in all journals with MSC: 65L10, 58F14

Additional Information

Keywords: Discrete deformations of bifurcation diagrams
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society