Linear multistep methods for Volterra integral and integro-differential equations

Authors:
P. J. van der Houwen and H. J. J. te Riele

Journal:
Math. Comp. **45** (1985), 439-461

MSC:
Primary 65R20; Secondary 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804934-5

MathSciNet review:
804934

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general class of linear multistep methods is presented for numerically solving first- and second-kind Volterra integral equations, and Volterra integro-differential equations. These so-called *VLM* methods, which include the well-known direct quadrature methods, allow for a unified treatment of the problems of consistency and convergence, and have an analogue in linear multistep methods for ODEs, as treated in any textbook on computational methods in ordinary differential equations.

General consistency and convergence results are presented (and proved in an Appendix), together with results of numerical experiments which support the theory.

**[1]**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****[2]**C. T. H. Baker,*Methods for Volterra equations of first kind*, Numerical solution of integral equations (Liverpool-Manchester Summer School, 1973) Clarendon Press, Oxford, 1974, pp. 162–174. MR**0488900****[3]**Christopher T. H. Baker, Athena Makroglou, and Edward Short,*Regions of stability in the numerical treatment of Volterra integro-differential equations*, SIAM J. Numer. Anal.**16**(1979), no. 6, 890–910. MR**551314**, https://doi.org/10.1137/0716066**[4]**H. Brunner, E. Hairer, and S. P. Nørsett,*Runge-Kutta theory for Volterra integral equations of the second kind*, Math. Comp.**39**(1982), no. 159, 147–163. MR**658219**, https://doi.org/10.1090/S0025-5718-1982-0658219-8**[5]**L. Garey,*Solving nonlinear second kind Volterra equations by modified increment methods*, SIAM J. Numer. Anal.**12**(1975), 501–508. MR**0383796**, https://doi.org/10.1137/0712039**[6]**Charles J. Gladwin,*Quadrature rule methods for Volterra integral equations of the first kind*, Math. Comp.**33**(1979), no. 146, 705–716. MR**521284**, https://doi.org/10.1090/S0025-5718-1979-0521284-2**[7]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[8]**P. J. van der Houwen and H. J. J. te Riele,*Backward differentiation type formulas for Volterra integral equations of the second kind*, Numer. Math.**37**(1981), no. 2, 205–217. MR**623041**, https://doi.org/10.1007/BF01398253**[9]**P. J. van der Houwen and H. J. J. te Riele,*Linear multistep methods for Volterra integral equations of the second kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 79–93. MR**755344****[10]**Mituo Kobayasi,*On numerical solution of the Volterra integral equations of the second kind by linear multistep methods*, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.**13**(1966), no. 3, 1–21. MR**0260220****[11]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[12]**P. Linz,*The Numerical Solution of Volterra Integral Equations by Finite Difference Methods*, MRC Tech. Summary Report #825, Math. Research Center, Madison, Wisc., November 1967.**[13]**Peter Linz,*Linear multistep methods for Volterra integro-differential equations.*, J. Assoc. Comput. Mach.**16**(1969), 295–301. MR**0239786**, https://doi.org/10.1145/321510.321521**[14]**Athena Makroglou,*Convergence of a block-by-block method for nonlinear Volterra integro-differential equations*, Math. Comp.**35**(1980), no. 151, 783–796. MR**572856**, https://doi.org/10.1090/S0025-5718-1980-0572856-9**[15]**William L. Mocarsky,*Convergence of step-by-step methods for non-linear integro-differential equations*, J. Inst. Math. Appl.**8**(1971), 235–239. MR**0287734****[16]**B. Noble,*A Bibliography on*:*Methods for Solving Integral Equations, --Author Listing*, MRC Techn. Summary Report. #1176, Sept. 1971,*--Subject Listing*, MRC Techn. Summary Report # 1177, Sept. 1971, Math. Research Center, Madison, Wisc.**[17]**Ben Noble,*Instability when solving Volterra integral equations of the second kind by multistep methods*, Conf. on Numerical Solution of Differential Equations (Dundee, 1969) Springer, Berlin, 1969, pp. 23–39. MR**0273859****[18]**B. Noble,*The numerical solution of nonlinear integral equations and related topics*, Nonlinear Integral Equations (Proc. Advanced Seminar Conducted by Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1963) Univ. Wisconsin Press, Madison, Wis., 1964, pp. 215–318. MR**0173369****[19]**Herman J. J. te Riele,*Collocation methods for weakly singular second-kind Volterra integral equations with nonsmooth solution*, IMA J. Numer. Anal.**2**(1982), no. 4, 437–449. MR**692290**, https://doi.org/10.1093/imanum/2.4.437**[20]**P. H. M. Wolkenfelt,*Reducible quadrature methods for Volterra integral equations of the first kind*, BIT**21**(1981), no. 2, 232–241. MR**627884**, https://doi.org/10.1007/BF01933168**[21]**P. H. M. Wolkenfelt,*The construction of reducible quadrature rules for Volterra integral and integro-differential equations*, IMA J. Numer. Anal.**2**(1982), no. 2, 131–152. MR**668589**, https://doi.org/10.1093/imanum/2.2.131**[22]**P. H. M. Wolkenfelt,*Modified multilag methods for Volterra functional equations*, Math. Comp.**40**(1983), no. 161, 301–316. MR**679447**, https://doi.org/10.1090/S0025-5718-1983-0679447-2**[23]**P. H. M. Wolkenfelt, P. J. van der Houwen, and Chr. T. H. Baker,*Analysis of numerical methods for second kind Volterra equations by imbedding techniques*, J. Integral Equations**3**(1981), no. 1, 61–82. MR**604316**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45L10

Retrieve articles in all journals with MSC: 65R20, 45L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804934-5

Keywords:
Numerical analysis,
Volterra integral and integro-differential equations,
linear multistep methods,
consistency,
convergence

Article copyright:
© Copyright 1985
American Mathematical Society