Fractional linear multistep methods for Abel-Volterra integral equations of the second kind

Author:
Ch. Lubich

Journal:
Math. Comp. **45** (1985), 463-469

MSC:
Primary 65R20; Secondary 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804935-7

MathSciNet review:
804935

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fractional powers of linear multistep methods are suggested for the numerical solution of weakly singular Volterra integral equations. The proposed methods are convergent of the order of the underlying multistep method, also in the generic case of solutions which are not smooth at the origin. The stability properties (stability region, *A*-stability, -stability) are closely related to those of the underlying linear multistep method.

**[1]**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****[2]**Hermann Brunner,*A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations*, J. Comput. Appl. Math.**8**(1982), no. 3, 213–229. MR**682889**, https://doi.org/10.1016/0771-050X(82)90044-4**[3]**Hermann Brunner,*The numerical solution of integral equations with weakly singular kernels*, Numerical analysis (Dundee, 1983) Lecture Notes in Math., vol. 1066, Springer, Berlin, 1984, pp. 50–71. MR**760457**, https://doi.org/10.1007/BFb0099518**[4]**R. F. Cameron and S. McKee,*Product integration methods for second-kind Abel integral equations*, J. Comput. Appl. Math.**11**(1984), no. 1, 1–10. MR**753608**, https://doi.org/10.1016/0377-0427(84)90027-X**[5]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[6]**A. Erdélyi (editor),*Higher Transcendental Functions*, vol. I, McGraw-Hill, New York, 1953.**[7]**E. Hairer, Ch. Lubich, and M. Schlichte,*Fast numerical solution of nonlinear Volterra convolution equations*, SIAM J. Sci. Statist. Comput.**6**(1985), no. 3, 532–541. MR**791183**, https://doi.org/10.1137/0906037**[8]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[9]**D. Kershaw,*Some results for Abel-Volterra integral equations of the second kind*, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 273–282. MR**755362****[10]**N. Levinson, "A nonlinear Volterra equation arising in the theory of superfluidity,"*J. Math. Anal. Appl.*, v. 1, 1960, pp. 1-11.**[11]**Peter Linz,*Numerial methods for Volterra integral equations with singular kernels.*, SIAM J. Numer. Anal.**6**(1969), 365–374. MR**0260222**, https://doi.org/10.1137/0706034**[12]**Ch. Lubich,*Runge-Kutta theory for Volterra and Abel integral equations of the second kind*, Math. Comp.**41**(1983), no. 163, 87–102. MR**701626**, https://doi.org/10.1090/S0025-5718-1983-0701626-6**[13]**Ch. Lubich,*On the stability of linear multistep methods for Volterra convolution equations*, IMA J. Numer. Anal.**3**(1983), no. 4, 439–465. MR**728124**, https://doi.org/10.1093/imanum/3.4.439**[14]**Ch. Lubich,*A stability analysis of convolution quadratures for Abel-Volterra integral equations*, IMA J. Numer. Anal.**6**(1986), no. 1, 87–101. MR**967683**, https://doi.org/10.1093/imanum/6.1.87**[15]**Ch. Lubich,*Discretized fractional calculus*, SIAM J. Math. Anal.**17**(1986), no. 3, 704–719. MR**838249**, https://doi.org/10.1137/0517050**[16]**Ch. Lubich,*Discretized Operational Calculus. Part*I:*Theory*, Technical Report, Inst. f. Math. u. Geom., Univ. Innsbruck, 1984. (Submitted for publication.)**[17]**J. Matthys,*𝐴-stable linear multistep methods for Volterra integro-differential equations*, Numer. Math.**27**(1976/77), no. 1, 85–94. MR**0436638**, https://doi.org/10.1007/BF01399087**[18]**Syvert P. Nørsett,*A criterion for 𝐴(𝛼)-stability of linear multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 259–263. MR**0256571****[19]**W. E. Olmstead and R. A. Handelsman,*Diffusion in a semi-infinite region with nonlinear surface dissipation*, SIAM Rev.**18**(1976), no. 2, 275–291. MR**0399657**, https://doi.org/10.1137/1018044**[20]**Emil L. Post,*Generalized differentiation*, Trans. Amer. Math. Soc.**32**(1930), no. 4, 723–781. MR**1501560**, https://doi.org/10.1090/S0002-9947-1930-1501560-X**[21]**P. H. M. Wolkenfelt,*Reducible quadrature methods for Volterra integral equations of the first kind*, BIT**21**(1981), no. 2, 232–241. MR**627884**, https://doi.org/10.1007/BF01933168

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45L10

Retrieve articles in all journals with MSC: 65R20, 45L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804935-7

Article copyright:
© Copyright 1985
American Mathematical Society