Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Recurrence relations for hypergeometric functions of unit argument


Author: Stanisław Lewanowicz
Journal: Math. Comp. 45 (1985), 521-535
MSC: Primary 33A35; Secondary 65Q05
DOI: https://doi.org/10.1090/S0025-5718-1985-0804941-2
Corrigendum: Math. Comp. 48 (1987), 853.
Corrigendum: Math. Comp. 48 (1987), 853-854.
MathSciNet review: 804941
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the generalized hypergeometric function

$\displaystyle {P_n}:{ = _{p + 3}}{F_{p + 2}}\left( {\left. {\begin{array}{*{20}... ...} \\ {{b_{p + 2}}} \\ \end{array} } \right\vert 1} \right)\quad (n \geqslant 0)$

satisfies a nonhomogeneous recurrence relation of order $ p + \sigma $, where $ \sigma = 0$ when $ _{p + 3}{F_{p + 2}}(1)$ is balanced, and $ \sigma = 1$ otherwise. Also, for

$\displaystyle {U_n}: = \frac{{{{({c_{q + 1}})}_n}}}{{{{({d_q})}_n}{{(n + \lambd... ...,2n + \lambda + 1} \\ \end{array} } \right\vert 1} \right)\quad (n \geqslant 0)$

a homogeneous recurrence relation of order $ q + 1$ is given.

References [Enhancements On Off] (What's this?)

  • [1] A. Erdélyi et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [2] S. L. Kalla, S. Conde & Y. L. Luke, "Integrals of Jacobi functions," Math. Comp., v. 38, 1982, pp. 207-214. MR 637298 (83a:33005)
  • [3] S. Karlin & J. L. McGregor, "The Hahn polynomials, formulas and an application," Scripta Math., v. 26, 1961, pp. 33-46. MR 0138806 (25:2249)
  • [4] Y. L. Luke, The Special Functions and Their Approximations, 2 vols., Academic Press, New York, 1969.
  • [5] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. MR 0201688 (34:1570)
  • [6] J. A. Wilson, "Three-term contiguous relations and some new orthogonal polynomials," in Padé and Rational Approximation (E. B. Saff and R. S. Varga, eds.), Academic Press, New York, 1977, pp. 227-232. MR 0466671 (57:6548)
  • [7] J. A. Wilson, "Some hypergeometric orthogonal polynomials," SIAM J. Math. Anal., v. 11, 1980, pp. 691-701. MR 579561 (82a:33014)
  • [8] J. Wimp, "Recursion formulae for hypergeometric functions," Math. Comp., v. 22, 1968, pp. 363-373. MR 0226065 (37:1655)
  • [9] J. Wimp, "The computation of $ _3{F_2}(1)$," Internat. J. Comput. Math., v. 10, 1981, pp. 55-62. MR 644716 (83d:65053)
  • [10] J. Wimp, "Differential-difference properties of hypergeometric polynomials," Math. Comp., v. 29, 1975, pp. 577-581. MR 0440085 (55:12966)
  • [11] J. Wimp, "Irreducible recurrence relations and representation theorems for $ _3{F_2}(1)$," Comput. Math. Appl., v. 9, 1983, pp. 669-678.
  • [12] S. Lewanowicz, "On the differential-difference properties of the extended Jacobi polynomials," Math. Comp., v. 44, 1985, pp. 435-441. MR 777275 (86c:33001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A35, 65Q05

Retrieve articles in all journals with MSC: 33A35, 65Q05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0804941-2
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society