Recurrence relations for hypergeometric functions of unit argument

Author:
Stanisław Lewanowicz

Journal:
Math. Comp. **45** (1985), 521-535

MSC:
Primary 33A35; Secondary 65Q05

Corrigendum:
Math. Comp. **48** (1987), 853.

Corrigendum:
Math. Comp. **48** (1987), 853-854.

MathSciNet review:
804941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the generalized hypergeometric function

**[1]**A. Erdélyi et al.,*Higher Transcendental Functions*, Vol. 1, McGraw-Hill, New York, 1953.**[2]**Shyam L. Kalla, Salvador Conde, and Yudell L. Luke,*Integrals of Jacobi functions*, Math. Comp.**38**(1982), no. 157, 207–214. MR**637298**, 10.1090/S0025-5718-1982-0637298-8**[3]**Samuel Karlin and James L. McGregor,*The Hahn polynomials, formulas and an application*, Scripta Math.**26**(1961), 33–46. MR**0138806****[4]**Y. L. Luke,*The Special Functions and Their Approximations*, 2 vols., Academic Press, New York, 1969.**[5]**Lucy Joan Slater,*Generalized hypergeometric functions*, Cambridge University Press, Cambridge, 1966. MR**0201688****[6]**J. A. Wilson,*Three-term contiguous relations and some new orthogonal polynomials*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 227–232. MR**0466671****[7]**James A. Wilson,*Some hypergeometric orthogonal polynomials*, SIAM J. Math. Anal.**11**(1980), no. 4, 690–701. MR**579561**, 10.1137/0511064**[8]**Jet Wimp,*Recursion formulae for hypergeometric functions*, Math. Comp.**22**(1968), 363–373. MR**0226065**, 10.1090/S0025-5718-1968-0226065-8**[9]**Jet Wimp,*The computation of ₃𝐹₂(1)*, Internat. J. Comput. Math.**10**(1981/82), no. 1, 55–62. MR**644716**, 10.1080/00207168108803266**[10]**Jet Wimp,*Differential-difference properties of hypergeometric polynomials*, Math. Comp.**29**(1975), 577–581. MR**0440085**, 10.1090/S0025-5718-1975-0440085-3**[11]**J. Wimp, "Irreducible recurrence relations and representation theorems for ,"*Comput. Math. Appl.*, v. 9, 1983, pp. 669-678.**[12]**S. Lewanowicz,*On the differential-difference properties of the extended Jacobi polynomials*, Math. Comp.**44**(1985), no. 170, 435–441. MR**777275**, 10.1090/S0025-5718-1985-0777275-2

Retrieve articles in *Mathematics of Computation*
with MSC:
33A35,
65Q05

Retrieve articles in all journals with MSC: 33A35, 65Q05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804941-2

Article copyright:
© Copyright 1985
American Mathematical Society