A note on asymptotic evaluation of some Hankel transforms

Authors:
C. L. Frenzen and R. Wong

Journal:
Math. Comp. **45** (1985), 537-548

MSC:
Primary 41A60; Secondary 44A15, 65R10

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804942-4

MathSciNet review:
804942

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Asymptotic behavior of the integral

*w*is a large positive parameter. It is shown that decays exponentially like , , when is an entire function subject to a suitable growth condition. A complete asymptotic expansion is obtained when is a meromorphic function satisfying the same growth condition. Similar results are given when has some specific branch point singularities.

**[1]**Bruno Gabutti,*On high precision methods for computing integrals involving Bessel functions*, Math. Comp.**33**(1979), no. 147, 1049–1057. MR**528057**, https://doi.org/10.1090/S0025-5718-1979-0528057-5**[2]**B. Gabutti & B. Minetti, "A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function,"*J. Comput. Phys.*, v. 42, 1981, pp. 277-287.**[3]**R. J. Glauber,*High-energy collision theory*, Lectures in theoretical physics, Vol. I. Lectures delivered at the Summer Institute for Theoretical Physics, University of Colorado, Boulder, 1958 (edited by W. E. Brittin and L. G. Dunham), Interscience Publishers, New York-London, 1959, pp. 315–414. MR**0107488****[4]**Richard A. Handelsman and John S. Lew,*Asymptotic expansion of a class of integral transforms with algebraically dominated kernels*, J. Math. Anal. Appl.**35**(1971), 405–433. MR**0278012**, https://doi.org/10.1016/0022-247X(71)90227-7**[5]**Fritz Oberhettinger,*Tables of Bessel transforms*, Springer-Verlag, New York-Heidelberg, 1972. MR**0352888****[6]**F. W. J. Olver,*Asymptotics and special functions*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR**0435697****[7]**K. Soni,*Asymptotic expansion of the Hankel transform with explicit remainder terms*, Quart. Appl. Math.**40**(1982/83), no. 1, 1–14. MR**652045**, https://doi.org/10.1090/S0033-569X-1982-0652045-1**[8]**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746****[9]**R. Wong,*Error bounds for asymptotic expansions of Hankel transforms*, SIAM J. Math. Anal.**7**(1976), no. 6, 799–808. MR**0415224**, https://doi.org/10.1137/0507061**[10]**R. Wong,*Error bounds for asymptotic expansions of integrals*, SIAM Rev.**22**(1980), no. 4, 401–435. MR**593856**, https://doi.org/10.1137/1022086**[11]**Ahmed I. Zayed,*Asymptotic expansions of some integral transforms by using generalized functions*, Trans. Amer. Math. Soc.**272**(1982), no. 2, 785–802. MR**662067**, https://doi.org/10.1090/S0002-9947-1982-0662067-9

Retrieve articles in *Mathematics of Computation*
with MSC:
41A60,
44A15,
65R10

Retrieve articles in all journals with MSC: 41A60, 44A15, 65R10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804942-4

Keywords:
Asymptotic expansion,
Hankel transform,
Bessel functions,
Laplace's method

Article copyright:
© Copyright 1985
American Mathematical Society