Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Further extensions of a Legendre function integral


Author: Henry E. Fettis
Journal: Math. Comp. 45 (1985), 549-552
MSC: Primary 33A30
MathSciNet review: 804943
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The integral

$\displaystyle \int_z^1 {{{\left( {\frac{{1 - t}}{2}} \right)}^{\beta - 1}}{{\le... ...ight)}^{\mu /2}}\ln \left( {\frac{{1 - t}}{2}} \right)P_{\nu - 1}^\mu (t)\;dt} $

is evaluated as a hypergeometric function for arbitrary values of $ \nu $, $ \mu $, $ - 1 \leqslant z \leqslant 1$, and $ \operatorname{Re} (\beta ) > 0$.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A30

Retrieve articles in all journals with MSC: 33A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1985-0804943-6
PII: S 0025-5718(1985)0804943-6
Keywords: Jacobi polynomials, Legendre functions, hypergeometric functions, $ \Gamma $-functions, definite integrals, beta transform
Article copyright: © Copyright 1985 American Mathematical Society