Sets in which is always a square
Author:
Ezra Brown
Journal:
Math. Comp. 45 (1985), 613620
MSC:
Primary 11D57
MathSciNet review:
804949
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A set of size n is a set of distinct positive integers such that is a perfect square, whenever ; a set X can be extended if there exists such that is still a set. The most famous result on sets is due to Baker and Davenport, who proved that the set 1, 3, 8, 120 cannot be extended. In this paper, we show, among other things, that if , then there does not exist a set of size 4, and that the set 1, 2, 5 cannot be extended.
 [1]
A.
Baker and H.
Davenport, The equations 3𝑥²2=𝑦² and
8𝑥²7=𝑧², Quart. J. Math. Oxford Ser. (2)
20 (1969), 129–137. MR 0248079
(40 #1333)
 [2]
L. E. Dickson, History of the Theory of Numbers, vol. II, Carnegie Institute, Washington, 1920; reprinted, Chelsea, New York, 1966.
 [3]
Charles
M. Grinstead, On a method of solving a class of
Diophantine equations, Math. Comp.
32 (1978), no. 143, 936–940. MR 0491480
(58 #10724), http://dx.doi.org/10.1090/S00255718197804914800
 [4]
Peter
Heichelheim, The study of positive integers (𝑎,𝑏)
such that 𝑎𝑏+1 is a square, Fibonacci Quart.
17 (1979), no. 3, 269–274. MR 549810
(81e:10014)
 [5]
P.
Kangasabapathy and Tharmambikai
Ponnudurai, The simultaneous Diophantine equations
𝑦²3𝑥²=2 and
𝑧²8𝑥²=7, Quart. J. Math. Oxford Ser. (2)
26 (1975), no. 103, 275–278. MR 0387182
(52 #8027)
 [6]
S.
P. Mohanty and A.
M. S. Ramasamy, The simultaneous Diophantine equations
5𝑦²20=𝑋² and
2𝑦²+1=𝑍², J. Number Theory
18 (1984), no. 3, 356–359. MR 746870
(85h:11013), http://dx.doi.org/10.1016/0022314X(84)900684
 [7]
Trygve
Nagell, Introduction to Number Theory, John Wiley & Sons,
Inc., New York; Almqvist & Wiksell, Stockholm, 1951. MR 0043111
(13,207b)
 [8]
Giovanni
Sansone, Il sistema diofanteo 𝑁+1=𝑥²,
3𝑁+1=𝑦², 8𝑁+1=𝑧²., Ann. Mat.
Pura Appl. (4) 111 (1976), 125–151 (Italian). MR 0424672
(54 #12631)
 [9]
Neelambihai
Thamotherampillai, The set of numbers {1,2,7}, Bull. Calcutta
Math. Soc. 72 (1980), no. 4, 195–197. MR 669583
(83h:10032)
 [1]
 A. Baker & H. Davenport, "The equations and ," Quart. J. Math. Oxford Ser. (3), v. 20, 1969, pp. 129137. MR 0248079 (40:1333)
 [2]
 L. E. Dickson, History of the Theory of Numbers, vol. II, Carnegie Institute, Washington, 1920; reprinted, Chelsea, New York, 1966.
 [3]
 C. M. Grinstead, "On a method of solving a class of Diophantine equations," Math. Comp., v. 32, 1978, pp. 936940. MR 0491480 (58:10724)
 [4]
 P. Heichelheim, "The study of positive integers (a, b) such that is a square," Fibonacci Quart., v. 17, 1979, pp. 269274. MR 549810 (81e:10014)
 [5]
 P. Kanagasabapathy & T. Ponnudurai, "The simultsneous Diophantine equations and ," Quart. J. Math. Oxford Ser. (3), v. 26, 1975, pp. 275278. MR 0387182 (52:8027)
 [6]
 S. P. Mohanty & A. M. S. Ramasamy, "The simultaneous Diophantine equations and ," J. Number Theory, v. 18, 1984, pp. 356359. MR 746870 (85h:11013)
 [7]
 T. Nagell, Introduction to Number Theory, Wiley, New York, 1951. MR 0043111 (13:207b)
 [8]
 G. Sansone, "Il sistema diofanteo , , ," Ann. Mat. Pura Appl. (4), v. 111, 1976, pp. 125151. MR 0424672 (54:12631)
 [9]
 N. Thamotherampillai, "The set of numbers 1, 2, 7," Bull. Calcutta Math. Soc., v. 72, 1980, pp. 195197. MR 669583 (83h:10032)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11D57
Retrieve articles in all journals
with MSC:
11D57
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198508049497
PII:
S 00255718(1985)08049497
Article copyright:
© Copyright 1985
American Mathematical Society
