Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Sets in which $ xy+k$ is always a square


Author: Ezra Brown
Journal: Math. Comp. 45 (1985), 613-620
MSC: Primary 11D57
DOI: https://doi.org/10.1090/S0025-5718-1985-0804949-7
MathSciNet review: 804949
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $ {P_k}$-set of size n is a set $ \{ {x_1}, \ldots ,{x_n}\} $ of distinct positive integers such that $ {x_i}{x_j} + k$ is a perfect square, whenever $ i \ne j$; a $ {P_k}$-set X can be extended if there exists $ y \notin X$ such that $ X \cup \{ y\} $ is still a $ {P_k}$-set. The most famous result on $ {P_k}$-sets is due to Baker and Davenport, who proved that the $ {P_1}$-set 1, 3, 8, 120 cannot be extended. In this paper, we show, among other things, that if $ k \equiv 2\;\pmod 4$, then there does not exist a $ {P_k}$-set of size 4, and that the $ {P_{ - 1}}$-set 1, 2, 5 cannot be extended.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker & H. Davenport, "The equations $ 3{x^2} - 2 = {y^2}$ and $ 8{x^2} - 7 = {z^2}$," Quart. J. Math. Oxford Ser. (3), v. 20, 1969, pp. 129-137. MR 0248079 (40:1333)
  • [2] L. E. Dickson, History of the Theory of Numbers, vol. II, Carnegie Institute, Washington, 1920; reprinted, Chelsea, New York, 1966.
  • [3] C. M. Grinstead, "On a method of solving a class of Diophantine equations," Math. Comp., v. 32, 1978, pp. 936-940. MR 0491480 (58:10724)
  • [4] P. Heichelheim, "The study of positive integers (a, b) such that $ ab + 1$ is a square," Fibonacci Quart., v. 17, 1979, pp. 269-274. MR 549810 (81e:10014)
  • [5] P. Kanagasabapathy & T. Ponnudurai, "The simultsneous Diophantine equations $ {y^2} - 3{x^2} = - 2$ and $ {z^2} - 8{x^2} = - 7$," Quart. J. Math. Oxford Ser. (3), v. 26, 1975, pp. 275-278. MR 0387182 (52:8027)
  • [6] S. P. Mohanty & A. M. S. Ramasamy, "The simultaneous Diophantine equations $ 5{Y^2} - 20 = {X^2}$ and $ 2{Y^2} + 1 = {Z^2}$," J. Number Theory, v. 18, 1984, pp. 356-359. MR 746870 (85h:11013)
  • [7] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951. MR 0043111 (13:207b)
  • [8] G. Sansone, "Il sistema diofanteo $ N + 1 = {x^2}$, $ 3N + 1 = {y^2}$, $ 8N + 1 = {z^2}$," Ann. Mat. Pura Appl. (4), v. 111, 1976, pp. 125-151. MR 0424672 (54:12631)
  • [9] N. Thamotherampillai, "The set of numbers 1, 2, 7," Bull. Calcutta Math. Soc., v. 72, 1980, pp. 195-197. MR 669583 (83h:10032)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11D57

Retrieve articles in all journals with MSC: 11D57


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0804949-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society