A counterexample to a conjecture of Mahler on best -adic Diophantine approximation constants

Author:
Alice A. Deanin

Journal:
Math. Comp. **45** (1985), 621-632

MSC:
Primary 11J61

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804950-3

MathSciNet review:
804950

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1940, Mahler proposed a conjecture regarding the value of best *P*-adic Diophantine approximation constants. In this paper, a computational technique which tests the conjecture for any particular *P* is described. A computer search verified the conjecture for all , except 83. The case *P* = 83 is discussed. A counterexample is given.

**[1]**H. Davenport, "Note on linear fractional substitutions with large determinant,"*Ann. of Math.*, v. 41, 1940, pp. 59-62. MR**0001771 (1:295a)****[2]**A. A. Deanin,*Mahler's P-Adic Continued Fraction Algorithm*, Ph.D. Dissertation, University of Maryland, 1983.**[3]**A. A. Deanin, "Periodicity of*P*-adic continued fraction expansions." (Preprint). MR**846967 (87k:11072)****[4]**L. R. Ford,*Automorphic Functions*, 2nd ed., Chelsea, New York, 1951.**[5]**K. Mahler, "On a geometrical representation of*p*-adic numbers,"*Ann. of Math.*, v. 41, 1940, pp. 8-56. MR**0001772 (1:295b)****[6]**B. M. M. de Weger,*Approximation Lattices of p-Adic Numbers*. Report no. 22, Math. Inst. R. U. Leiden, 1984.

Retrieve articles in *Mathematics of Computation*
with MSC:
11J61

Retrieve articles in all journals with MSC: 11J61

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0804950-3

Article copyright:
© Copyright 1985
American Mathematical Society