An analysis of a superconvergence result for a singularly perturbed boundary value problem

Authors:
Eugene O'Riordan and Martin Stynes

Journal:
Math. Comp. **46** (1986), 81-92

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815833-8

MathSciNet review:
815833

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof that the El-Mistikawy and Werle finite-difference scheme is uniformly second-order accurate for a nonselfadjoint singularly perturbed boundary value problem. To do this, we use exponential finite elements and a discretized Green's function. The proof is direct, gives the nodal errors explicitly in integral form, and involves much less computation than in previous proofs of the result.

**[1]**Alan E. Berger, Jay M. Solomon, and Melvyn Ciment,*An analysis of a uniformly accurate difference method for a singular perturbation problem*, Math. Comp.**37**(1981), no. 155, 79–94. MR**616361**, https://doi.org/10.1090/S0025-5718-1981-0616361-0**[2]**T. M. EL-Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing--the exponential box scheme,"*AIAA J.*, v. 16, 1978, pp. 749-751.**[3]**P. P. N. de Groen and P. W. Hemker,*Error bounds for exponentially fitted Galerkin methods applied to stiff two-point boundary value problems*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 217–249. MR**556520****[4]**A. F. Hegarty, J. J. H. Miller, and E. O’Riordan,*Uniform second order difference schemes for singular perturbation problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR**589380****[5]**P. W. Hemker,*A Numerical Study of Stiff Two-point Boundary Value Problems*, Mathematical Centre, Amsterdam, 1977.**[6]**A. M. Il′in,*A difference scheme for a differential equation with a small parameter multiplying the highest derivative*, Mat. Zametki**6**(1969), 237–248 (Russian). MR**0260195****[7]**R. Bruce Kellogg and Alice Tsan,*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**0483484**, https://doi.org/10.1090/S0025-5718-1978-0483484-9**[8]**E. O'Riordan,*Finite Element Methods for Singularly Perturbed Problems*, Ph. D. thesis, School of Mathematics, Trinity College, Dublin, 1982.**[9]**Eugene O’Riordan,*Singularly perturbed finite element methods*, Numer. Math.**44**(1984), no. 3, 425–434. MR**757497**, https://doi.org/10.1007/BF01405573**[10]**Donald R. Smith,*The multivariable method in singular perturbation analysis*, SIAM Rev.**17**(1975), 221–273. MR**0361331**, https://doi.org/10.1137/1017032**[11]**Martin Stynes and Eugene O’Riordan,*A superconvergence result for a singularly perturbed boundary value problem*, BAIL III (Dublin, 1984) Boole Press Conf. Ser., vol. 6, Boole, Dún Laoghaire, 1984, pp. 309–313. MR**774624****[12]**Martin Stynes and Eugene O’Riordan,*A uniformly accurate finite element method for a singular perturbation problem in conservative form*, SIAM J. Numer. Anal.**23**(1986), no. 2, 369–375. MR**831623**, https://doi.org/10.1137/0723024

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815833-8

Article copyright:
© Copyright 1986
American Mathematical Society