Natural continuous extensions of Runge-Kutta methods

Author:
M. Zennaro

Journal:
Math. Comp. **46** (1986), 119-133

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815835-1

MathSciNet review:
815835

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper develops a theory of Natural Continuous Extensions (NCEs) for the discrete approximate solution of an ODE given by a Runge-Kutta process. These NCEs are defined in such a way that the continuous solutions furnished by the one-step collocation methods are included.

**[1]**H. Arndt, "Numerical solution of retarded initial value problems: Local and global error and stepsize control,"*Numer. Math.*, v. 43, 1984, pp. 343-360. MR**738381 (85h:65142)****[2]**A. Bellen, "One-step collocation for delay differential equations,"*J. Comput. Appl. Math.*, v. 10, 1984, pp. 275-283. MR**755804 (85m:65061)****[3]**A. Bellen & M. Zennaro, "Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method,"*Numer. Math.*, v. 47, 1985, pp. 301-316. MR**799688 (87b:65087)****[4]**J. C. Butcher, "Coefficients for the study of Runge-Kutta integration processes,"*J. Austral. Math. Soc.*, v. 3, 1963, pp. 185-201. MR**0152129 (27:2109)****[5]**J. C. Butcher, "Implicit Runge-Kutta processes,"*Math. Comp.*, v. 18, 1964, pp. 50-64. MR**0159424 (28:2641)****[6]**J. C. Butcher, "Integration processes based on Radau quadrature formulas,"*Math. Comp.*, v. 18, 1964, pp. 233-243. MR**0165693 (29:2973)****[7]**A. Guillou & F. L. Soulé, "La résolution numérique des problèmes differentielles aux conditions initials par des méthodes de collocation,"*RAIRO*, v. 3, 1969, pp. 17-44. MR**0280008 (43:5729)****[8]**B. L. Hulme, "One-step piecewise polynomial Galerkin methods for initial value problems,"*Math. Comp.*, v. 26, 1972, pp. 415-426. MR**0321301 (47:9834)****[9]**S. P. Nørsett & G. Wanner, "The real-pole sandwich for rational approximation and oscillation equations,"*BIT*, v. 19, 1979, pp. 79-94. MR**530118 (81d:65040)****[10]**S. P. Nørsett & G. Wanner, "Perturbed collocation and Runge-Kutta methods,"*Numer. Math.*, v. 38, 1981, pp. 193-208. MR**638444 (82m:65065)****[11]**H. J. Oberle & H. J. Pesh, "Numerical treatment of delay differential equations by Hermite interpolation,"*Numer. Math.*, v. 37, 1981, pp. 235-255. MR**623043 (83a:65077)****[12]**R. Vermiglio, "A one-step subregion method for delay differential equations,"*Calcolo*. (In press.) MR**859086 (88a:65087)****[13]**K. Wright, "Some relationships between implicit Runge-Kutta, collocation and Lanczos -method, and their stability properties,"*BIT*, v. 10, 1970, pp. 217-227. MR**0266439 (42:1345)****[14]**M. Zennaro, "One-step collocation: Uniform superconvergence, predictor-corrector method, local error estimate,"*SIAM J. Numer. Anal.*, v. 22, 1985. MR**811188 (86m:65084)****[15]**T. S. Zverkina, "A modification of finite-difference methods for integrating ordinary differential equations with nonsmooth solutions,"*Zh. Vychisl. Mat. i Mat. Fiz.*, v. 4 (suppl.), 1964, pp. 149-160. (In Russian.) MR**0211614 (35:2492)****[16]**T. S. Zverkina, "A modified Adams' formula for the integration of equations with deviating argument,"*Trudy Sem. Teor. Differencial. Uravnenũ s Otklon. Argumentom*, Univ. Družby Narodov Patrisa Lumumby, vol. 3, 1965, pp. 221-232. (In Russian.) MR**0196947 (33:5131)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815835-1

Article copyright:
© Copyright 1986
American Mathematical Society