Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Natural continuous extensions of Runge-Kutta methods


Author: M. Zennaro
Journal: Math. Comp. 46 (1986), 119-133
MSC: Primary 65L05
DOI: https://doi.org/10.1090/S0025-5718-1986-0815835-1
MathSciNet review: 815835
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper develops a theory of Natural Continuous Extensions (NCEs) for the discrete approximate solution of an ODE given by a Runge-Kutta process. These NCEs are defined in such a way that the continuous solutions furnished by the one-step collocation methods are included.


References [Enhancements On Off] (What's this?)

  • [1] H. Arndt, "Numerical solution of retarded initial value problems: Local and global error and stepsize control," Numer. Math., v. 43, 1984, pp. 343-360. MR 738381 (85h:65142)
  • [2] A. Bellen, "One-step collocation for delay differential equations," J. Comput. Appl. Math., v. 10, 1984, pp. 275-283. MR 755804 (85m:65061)
  • [3] A. Bellen & M. Zennaro, "Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method," Numer. Math., v. 47, 1985, pp. 301-316. MR 799688 (87b:65087)
  • [4] J. C. Butcher, "Coefficients for the study of Runge-Kutta integration processes," J. Austral. Math. Soc., v. 3, 1963, pp. 185-201. MR 0152129 (27:2109)
  • [5] J. C. Butcher, "Implicit Runge-Kutta processes," Math. Comp., v. 18, 1964, pp. 50-64. MR 0159424 (28:2641)
  • [6] J. C. Butcher, "Integration processes based on Radau quadrature formulas," Math. Comp., v. 18, 1964, pp. 233-243. MR 0165693 (29:2973)
  • [7] A. Guillou & F. L. Soulé, "La résolution numérique des problèmes differentielles aux conditions initials par des méthodes de collocation," RAIRO, v. 3, 1969, pp. 17-44. MR 0280008 (43:5729)
  • [8] B. L. Hulme, "One-step piecewise polynomial Galerkin methods for initial value problems," Math. Comp., v. 26, 1972, pp. 415-426. MR 0321301 (47:9834)
  • [9] S. P. Nørsett & G. Wanner, "The real-pole sandwich for rational approximation and oscillation equations," BIT, v. 19, 1979, pp. 79-94. MR 530118 (81d:65040)
  • [10] S. P. Nørsett & G. Wanner, "Perturbed collocation and Runge-Kutta methods," Numer. Math., v. 38, 1981, pp. 193-208. MR 638444 (82m:65065)
  • [11] H. J. Oberle & H. J. Pesh, "Numerical treatment of delay differential equations by Hermite interpolation," Numer. Math., v. 37, 1981, pp. 235-255. MR 623043 (83a:65077)
  • [12] R. Vermiglio, "A one-step subregion method for delay differential equations," Calcolo. (In press.) MR 859086 (88a:65087)
  • [13] K. Wright, "Some relationships between implicit Runge-Kutta, collocation and Lanczos $ \tau $-method, and their stability properties," BIT, v. 10, 1970, pp. 217-227. MR 0266439 (42:1345)
  • [14] M. Zennaro, "One-step collocation: Uniform superconvergence, predictor-corrector method, local error estimate," SIAM J. Numer. Anal., v. 22, 1985. MR 811188 (86m:65084)
  • [15] T. S. Zverkina, "A modification of finite-difference methods for integrating ordinary differential equations with nonsmooth solutions," Zh. Vychisl. Mat. i Mat. Fiz., v. 4 (suppl.), 1964, pp. 149-160. (In Russian.) MR 0211614 (35:2492)
  • [16] T. S. Zverkina, "A modified Adams' formula for the integration of equations with deviating argument," Trudy Sem. Teor. Differencial. Uravnenũ s Otklon. Argumentom, Univ. Družby Narodov Patrisa Lumumby, vol. 3, 1965, pp. 221-232. (In Russian.) MR 0196947 (33:5131)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L05

Retrieve articles in all journals with MSC: 65L05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0815835-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society