Some practical Runge-Kutta formulas

Author:
Lawrence F. Shampine

Journal:
Math. Comp. **46** (1986), 135-150

MSC:
Primary 65L05

MathSciNet review:
815836

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new selection is made of the most practical of the many explicit Runge-Kutta formulas of order 4 which have been proposed. A new formula is considered, formulas are modified to improve their quality and efficiency in agreement with improved understanding of the issues, and formulas are derived which permit interpolation. It is possible to do a lot better than the pair of Fehlberg currently regarded as "best".

**[1]**J. R. Dormand and P. J. Prince,*A family of embedded Runge-Kutta formulae*, J. Comput. Appl. Math.**6**(1980), no. 1, 19–26. MR**568599**, 10.1016/0771-050X(80)90013-3**[2]**W. H. Enright and T. E. Hull,*Test results on initial value methods for non-stiff ordinary differential equations*, SIAM J. Numer. Anal.**13**(1976), no. 6, 944–961. MR**0428714****[3]**E. Fehlberg,*Low-Order Classical Runge-Kutta Formulas with Stepsize Control and Their Application to Some Heat Transfer Problems*, Rept. NASA TR R-315, George C. Marshall Space Flight Center, Marshall, Alabama, 1969.**[4]**E. Fehlberg,*Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme*, Computing (Arch. Elektron. Rechnen)**6**(1970), 61–71 (German, with English summary). MR**0280007****[5]**I. Gladwell, "Initial value routines in the NAG library,"*ACM Trans. Math. Software*, v. 5, 1979, pp. 386-400.**[6]**G. Hall and J. M. Watt (eds.),*Modern numerical methods for ordinary differential equations*, Clarendon Press, Oxford, 1976. With contributions by J. C. Butcher, J. D. Lambert, A. Prothero, H. H. Robertson, C. T. H. Baker, I. Gladwell, G. Hall, J. E. Walsh, J. Williams, L. M. Delves, M. A. Hennell, R. Wait and J. M. Watt. MR**0474823****[7]**M. K. Horn,*Scaled Runge-Kutta Algorithms for Handling Dense Output*, Rept. DFVLR-FB81-13, DFVLR, Oberpfaffenhofen, F.R.G., 1981.**[8]**M. K. Horn,*Scaled Runge-Kutta Algorithms for Treating the Problem of Dense Output*, Rept. NASA TMX-58239, L. B. Johnson Space Center, Houston, Texas, 1982.**[9]**M. K. Horn,*Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output*, SIAM J. Numer. Anal.**20**(1983), no. 3, 558–568. MR**701096**, 10.1137/0720036**[10]**T. E. Hull & W. H. Enright,*A Structure for Programs that Solve Ordinary Differential Equations*, Rept. 66, Dept. Comp. Sci., Univ. of Toronto, Canada, 1974.**[11]**T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick,*Comparing numerical methods for ordinary differential equations*, SIAM J. Numer. Anal.**9**(1972), 603–637; errata, ibid. 11 (1974), 681. MR**0351086****[12]**T. E. Hull, W. H. Enright & K. R. Jackson,*User's Guide for*DVERK--*a Subroutine for Solving Non-Stiff ODE's*, Rept. 100, Dept. Comp. Sci., Univ. of Toronto, Canada, 1976.**[13]**L. F. Shampine,*Local extrapolation in the solution of ordinary differential equations*, Math. Comp.**27**(1973), 91–97. MR**0331803**, 10.1090/S0025-5718-1973-0331803-1**[14]**L. F. Shampine,*Robust Relative Error Control*, Rept. SAND82-2320, Sandia National Laboratories, Albuquerque, New Mexico, 1982.**[15]**Lawrence F. Shampine,*Interpolation for Runge-Kutta methods*, SIAM J. Numer. Anal.**22**(1985), no. 5, 1014–1027. MR**799125**, 10.1137/0722060**[16]**Lawrence F. Shampine,*The step sizes used by one-step codes for ODEs*, Appl. Numer. Math.**1**(1985), no. 1, 95–106. MR**775731**, 10.1016/0168-9274(85)90030-3**[17]**L. F. Shampine,*Local error estimation by doubling*, Computing**34**(1985), no. 2, 179–190 (English, with German summary). MR**793081**, 10.1007/BF02259844**[18]**L. F. Shampine and H. A. Watts,*Comparing error estimators for Runge-Kutta methods*, Math. Comp.**25**(1971), 445–455. MR**0297138**, 10.1090/S0025-5718-1971-0297138-9**[19]**L. F. Shampine & H. A. Watts,*Practical Solution of Ordinary Differential Equations by Runge-Kutta Methods*, Rept. SAND76-0585, Sandia National Laboratories, Albuquerque, New Mexico, 1976.**[20]**L. F. Shampine & H. A. Watts,*DEPAC-Design of a User Oriented Package of ODE Solvers*, Rept. SAND79-2374, Sandia National Laboratories, Albuquerque, New Mexico, 1980.**[21]**L. F. Shampine, H. A. Watts, and S. M. Davenport,*Solving nonstiff ordinary differential equations—the state of the art*, SIAM Rev.**18**(1976), no. 3, 376–411. MR**0413522****[22]**Hisayoshi Shintani,*On a one-step method of order 4*, J. Sci. Hiroshima Univ. Ser. A-I Math.**30**(1966), 91–107. MR**0199967**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815836-3

Article copyright:
© Copyright 1986
American Mathematical Society