Computing volumes of polyhedra

Authors:
Eugene L. Allgower and Phillip H. Schmidt

Journal:
Math. Comp. **46** (1986), 171-174

MSC:
Primary 51M25; Secondary 26B15, 65D32

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815838-7

MathSciNet review:
815838

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we give two simple methods for calculating the volume of any closed bounded polyhedron in having an orientable boundary which is triangulated into a set of -dimensional simplices. The formulas given require only coordinates of the vertices of the polyhedron.

**[1]**E. L. Allgower & P. H. Schmidt, "An algorithm for piecewise-linear approximation of an implicitly defined manifold,"*SIAM J. Numer. Anal.*, v. 22, 1985, pp. 322-346. MR**781323 (86h:65070)****[2]**H. Hadwiger,*Vorlesungen über Inhalt. Oberfläche und Isoperimetrie*, Springer-Verlag, Berlin, 1957. MR**0102775 (21:1561)****[3]**B. Grunbaum,*Convex Polytopes*, Wiley-Interscience, New York, 1967. MR**0226496 (37:2085)****[4]**R. Fletcher & S. P. J. Matthews,*A Stable Algorithm for Updating Triangular Factors Under a Rank One Change*, Report NA/69, Department of Mathematical Sciences, University of Dundee, Dundee, Scotland, November, 1983.**[5]**B. Von Hohenbalken, "Least distance methods for the scheme of polytopes,"*Math. Programming*, v. 15, 1978, pp. 1-11. MR**501955 (80a:52008)****[6]**B. Von Hohenbalken, "Finding simplicial subdivisions of polytopes,"*Math. Programming*, v. 21, 1981, pp. 233-234. MR**623842 (82h:52001)****[7]**H. Whitney,*Geometric Integration Theory*, Princeton Univ. Press, Princeton, N.J., 1957. MR**0087148 (19:309c)**

Retrieve articles in *Mathematics of Computation*
with MSC:
51M25,
26B15,
65D32

Retrieve articles in all journals with MSC: 51M25, 26B15, 65D32

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815838-7

Keywords:
Volume,
polytopes

Article copyright:
© Copyright 1986
American Mathematical Society