Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing volumes of polyhedra


Authors: Eugene L. Allgower and Phillip H. Schmidt
Journal: Math. Comp. 46 (1986), 171-174
MSC: Primary 51M25; Secondary 26B15, 65D32
DOI: https://doi.org/10.1090/S0025-5718-1986-0815838-7
MathSciNet review: 815838
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we give two simple methods for calculating the volume of any closed bounded polyhedron in $ {{\mathbf{R}}^n}$ having an orientable boundary which is triangulated into a set of $ (n - 1)$-dimensional simplices. The formulas given require only coordinates of the vertices of the polyhedron.


References [Enhancements On Off] (What's this?)

  • [1] E. L. Allgower & P. H. Schmidt, "An algorithm for piecewise-linear approximation of an implicitly defined manifold," SIAM J. Numer. Anal., v. 22, 1985, pp. 322-346. MR 781323 (86h:65070)
  • [2] H. Hadwiger, Vorlesungen über Inhalt. Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957. MR 0102775 (21:1561)
  • [3] B. Grunbaum, Convex Polytopes, Wiley-Interscience, New York, 1967. MR 0226496 (37:2085)
  • [4] R. Fletcher & S. P. J. Matthews, A Stable Algorithm for Updating Triangular Factors Under a Rank One Change, Report NA/69, Department of Mathematical Sciences, University of Dundee, Dundee, Scotland, November, 1983.
  • [5] B. Von Hohenbalken, "Least distance methods for the scheme of polytopes," Math. Programming, v. 15, 1978, pp. 1-11. MR 501955 (80a:52008)
  • [6] B. Von Hohenbalken, "Finding simplicial subdivisions of polytopes," Math. Programming, v. 21, 1981, pp. 233-234. MR 623842 (82h:52001)
  • [7] H. Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, N.J., 1957. MR 0087148 (19:309c)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 51M25, 26B15, 65D32

Retrieve articles in all journals with MSC: 51M25, 26B15, 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0815838-7
Keywords: Volume, polytopes
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society