Convergence of product integration rules for functions with interior and endpoint singularities over bounded and unbounded intervals

Authors:
D. S. Lubinsky and Avram Sidi

Journal:
Math. Comp. **46** (1986), 229-245

MSC:
Primary 41A55; Secondary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815845-4

MathSciNet review:
815845

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The convergence of product integration rules, based on Gaussian quadrature points, is investigated for functions with interior and endpoint singularities over bounded and unbounded intervals. The investigation is based on a new convergence result for Lagrangian interpolation and Gaussian quadrature of singular integrands.

**[1]**P. J. Davis & P. Rabinowitz, "Ignoring the singularity in approximate integration,"*SIAM J. Numer. Anal.*, v. 2, 1965, pp. 367-383. MR**0195256 (33:3459)****[2]**G. de Barra,*Introduction to Measure Theory*, Van Nostrand, New York, 1974.**[3]**H. Esser, "Bemerkungen zu einem Satz von G. Freud über Quadraturkonvergenz,"*Computing*, v. 8, 1971, pp. 216-220. MR**0300439 (45:9485)****[4]**G. Freud,*Orthogonal Polynomials*, Pergamon Press, Budapest, 1971. (Translated by I. Földes.)**[5]**G. Freud, "On Markov-Bernstein-type inequalities and their applications,"*J. Approx. Theory*, v. 19, 1977, pp. 22-37. MR**0425426 (54:13381)****[6]**D. S. Lubinsky, "Gaussian quadrature, weights on the whole real line, and even entire functions with non-negative even order derivatives,"*J. Approx. Theory*(To appear.) MR**840397 (87i:41024)****[7]**D. S. Lubinsky & P. Rabinowitz, "Rates of convergence of Gaussian quadrature for singular integrands,"*Math. Comp.*, v. 43, 1984, pp. 219-242. MR**744932 (86b:65018)****[8]**P. Nevai, "Orthogonal polynomials,"*Mem. Amer. Math. Soc.*, v. 18, 1979, No. 213. MR**519926 (80k:42025)****[9]**P. Nevai, "Mean convergence of Lagrange interpolation. II,"*J. Approx. Theory*, v. 30, 1980, pp. 263-276. MR**616953 (82i:41003)****[10]**P. Rabinowitz, "Gaussian integration in the presence of a singularity,"*SIAM J. Numer. Anal.*, v. 4, 1967, pp. 191-201. MR**0213016 (35:3881)****[11]**P. Rabinowitz & I. H. Sloan, "Product integration in the presence of a singularity,"*SIAM J. Numer. Anal.*, v. 21, 1984, pp. 149-166. MR**731219 (85c:65023)****[12]**F. Riesz & B. Sz. Nagy,*Functional Analysis*, Ungar, New York, 1955. (Translated by L. F. Boron.) MR**0071727 (17:175i)****[13]**I. H. Sloan & W. E. Smith, "Properties of interpolatory product integration rules,"*SIAM J. Numer. Anal.*, v. 19, 1982, pp. 427-442. MR**650061 (83e:41032)****[14]**W. E. Smith, I. H. Sloan & A. H. Opie, "Product integration over infinite intervals I. Rules based on the zeros of Hermite polynomials,"*Math. Comp.*, v. 40, 1983, 519-535. MR**689468 (85a:65047)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A55,
65D30

Retrieve articles in all journals with MSC: 41A55, 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815845-4

Keywords:
Gauss quadrature,
Lagrange interpolation,
product integration rules,
convergence,
singular integrands

Article copyright:
© Copyright 1986
American Mathematical Society