More quadratically converging algorithms for

Authors:
J. M. Borwein and P. B. Borwein

Journal:
Math. Comp. **46** (1986), 247-253

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815846-6

MathSciNet review:
815846

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a quadratically converging algorithm for based on a formula of Legendre's for complete elliptic integrals of modulus and the arithmetic-geometric mean iteration of Gauss and Legendre. Precise asymptotics are provided which show this algorithm to be (marginally) the most efficient developed to date. As such it provides a natural computational check for the recent large-scale calculations of .

**[1]**Petr Beckmann,*A history of 𝜋 (pi)*, 2nd ed., The Golem Press, Boulder, Colo., 1971. MR**0449960****[2]**J. M. Borwein and P. B. Borwein,*The arithmetic-geometric mean and fast computation of elementary functions*, SIAM Rev.**26**(1984), no. 3, 351–366. MR**750454**, https://doi.org/10.1137/1026073**[3]**Richard P. Brent,*Fast multiple-precision evaluation of elementary functions*, J. Assoc. Comput. Mach.**23**(1976), no. 2, 242–251. MR**0395314**, https://doi.org/10.1145/321941.321944**[4]**K. F. Gauss,*Werke*, Bd. 3, Noordhoff, Göttingen, 1866, pp. 361-403.**[5]**L. V. King,*On The Direct Numerical Calculation of Elliptic Functions and Integrals*, Cambridge Univ. Press, New York, 1924.**[6]**A. M. Legendre,*Exercises de Calcul Integral*, Vol. 1, Dunod, Paris, 1811.**[7]**Donald J. Newman,*Rational approximation versus fast computer methods*, Lectures on approximation and value distribution, Sém. Math. Sup., vol. 79, Presses Univ. Montréal, Montreal, Que., 1982, pp. 149–174. MR**654686****[8]**D. J. Newman,*A simplified version of the fast algorithms of Brent and Salamin*, Math. Comp.**44**(1985), no. 169, 207–210. MR**771042**, https://doi.org/10.1090/S0025-5718-1985-0771042-1**[9]**Eugene Salamin,*Computation of 𝜋 using arithmetic-geometric mean*, Math. Comp.**30**(1976), no. 135, 565–570. MR**0404124**, https://doi.org/10.1090/S0025-5718-1976-0404124-9**[10]**Y. Tamura & Y. Kanada,*Calculation of**to*4,194,293*Decimals Based on Gauss-Legendre Algorithm*. (Preprint.)**[11]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469****[12]**J. W. Wrench, Jr., "The evolution of extended decimal approximations to ,"*The Mathematics Teacher*, v. 53, 1960, pp. 644-650.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815846-6

Keywords:
,
arithmetic-geometric mean iteration,
high-precision calculation

Article copyright:
© Copyright 1986
American Mathematical Society