Use of a computer scan to prove and are Euclidean
Authors:
Harvey Cohn and Jesse Deutsch
Journal:
Math. Comp. 46 (1986), 295299
MSC:
Primary 11R16; Secondary 11H50, 11Y40
MathSciNet review:
815850
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The fields in the title are shown to be normEuclidean by a computer scan of the unit 4cube representing coordinates of a field element translated by integers. The method is to subdivide this cube into sufficiently many small boxes so the norm is less than unity in each box, when referred to an appropriate "neighboring" integer.
 [1]
Helmut
Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer
Zahlkörper, J. Number Theory 1 (1969),
161–162 (German, with English summary). MR 0240072
(39 #1426)
 [2]
Harvey
Cohn, A numerical study of Weber’s real class number of
calculation. I, Numer. Math. 2 (1960), 347–362.
MR
0122809 (23 #A142)
 [3]
Harvey
Cohn, A classical invitation to algebraic numbers and class
fields, SpringerVerlag, New YorkHeidelberg, 1978. With two
appendices by Olga Taussky: “Artin’s 1932 Göttingen
lectures on class field theory” and “Connections between
algebraic number theory and integral matrices”; Universitext. MR 506156
(80c:12001)
 [4]
H.
J. Godwin, Real quartic fields with small discriminant, J.
London Math. Soc. 31 (1956), 478–485. MR 0082526
(18,565b)
 [5]
H.
J. Godwin, On Euclid’s algorithm in some quartic and quintic
fields, J. London Math. Soc. 40 (1965),
699–704. MR 0184928
(32 #2399)
 [6]
H.
W. Lenstra Jr., Euclidean number fields of large degree,
Invent. Math. 38 (1976/77), no. 3, 237–254. MR 0429826
(55 #2836)
 [7]
Hendrik
W. Lenstra Jr., Euclidean number fields. II, III, Math.
Intelligencer 2 (1979/80), no. 2, 73–77,
99–103. Translated from the Dutch by A. J. Van der Poorten. MR 577555
(81m:12001), http://dx.doi.org/10.1007/BF03023376
 [8]
John
Myron Masley, Class numbers of real cyclic number fields with small
conductor, Compositio Math. 37 (1978), no. 3,
297–319. MR
511747 (80e:12005)
 [1]
 H. Bauer, "Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper," J. Number Theory, v. 1, 1969, pp. 161162. MR 0240072 (39:1426)
 [2]
 H. Cohn, "A numerical study of Weber's real class number calculation I," Numer. Math., v. 2, 1960, pp. 374362. MR 0122809 (23:A142)
 [3]
 H. Cohn, A Classical Introduction to Algebraic Numbers and Class Fields, SpringerVerlag, Berlin and New York, 1978, p. 9. MR 506156 (80c:12001)
 [4]
 H. Godwin, "Real quartic fields with small discriminant," J. London Math. Soc., v. 31, 1956, pp. 478485. MR 0082526 (18:565b)
 [5]
 H. Godwin, "On Euclid's algorithm in some quartic and quintic fields," J. London Math. Soc., v. 40, 1965, pp. 699704. MR 0184928 (32:2399)
 [6]
 H. Lenstra, Jr., "Euclidean number fields of large degree," Invent. Math., v. 38, 1977, pp. 237254. MR 0429826 (55:2836)
 [7]
 H. Lenstra, Jr., "Euclidean number fields 2," Math. Intelligencer, v. 2, 1980, pp. 7383. MR 577555 (81m:12001)
 [8]
 J. Masley, "Class numbers of real cyclic number fields with small conductor," Compositio Math., v. 37, 1978, pp. 297319. MR 511747 (80e:12005)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R16,
11H50,
11Y40
Retrieve articles in all journals
with MSC:
11R16,
11H50,
11Y40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198608158508
PII:
S 00255718(1986)08158508
Keywords:
Euclidean algorithm
Article copyright:
© Copyright 1986
American Mathematical Society
