Finite element technique for optimal pressure recovery from stream function formulation of viscous flows

Authors:
M. E. Cayco and R. A. Nicolaides

Journal:
Math. Comp. **46** (1986), 371-377

MSC:
Primary 65N30; Secondary 76-08, 76D05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829614-2

MathSciNet review:
829614

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following a general analysis of convergence for the finite element solution of the stream function formulation of the Navier-Stokes equation in bounded regions of the plane, an algorithm for pressure recovery is presented. This algorithm, which is easy to implement, is then analyzed and conditions ensuring optimality of the approximation are given. An application is made to a standard conforming cubic macroelement.

**[1]**A. K. Aziz (ed.),*The mathematical foundations of the finite element method with applications to partial differential equations*, Academic Press, New York-London, 1972. MR**0347104****[2]**A. S. Benjamin & V. E. Denny, "On the convergence of numerical solutions for 2-D flows in a cavity at large Re,"*J. Comput. Phys.*, v. 33, 1979, pp. 340-358.**[3]**P. L. Betts & V. Haroutunian, "A stream function finite element solution for two-dimensional natural convection,"*Finite Element Flow Analysis*(T. Kawai, ed.), Univ. of Tokyo Press, 1982, pp. 279-288.**[4]**H. Blum and R. Rannacher,*On the boundary value problem of the biharmonic operator on domains with angular corners*, Math. Methods Appl. Sci.**2**(1980), no. 4, 556–581. MR**595625**, https://doi.org/10.1002/mma.1670020416**[5]**J. M. Boland and R. A. Nicolaides,*Stability of finite elements under divergence constraints*, SIAM J. Numer. Anal.**20**(1983), no. 4, 722–731. MR**708453**, https://doi.org/10.1137/0720048**[6]**Philippe G. Ciarlet,*\cyr Metod konechnykh èlementov dlya èllipticheskikh zadach*, “Mir”, Moscow, 1980 (Russian). Translated from the English by B. I. Kvasov. MR**608971****[7]**U. Ghia, K. N. Ghia & C. T. Shin, "High Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method,"*J. Comput. Phys.*, v. 48, 1982, pp. 387-411.**[8]**V. Girault and P.-A. Raviart,*Finite element approximation of the Navier-Stokes equations*, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR**548867****[9]**M. D. Olson & S.-Y. Tuann, "New finite element results for the square cavity,"*Comput. & Fluids*, v. 7, 1979, pp. 123-135.**[10]**Shih Yu Tuann and Mervyn D. Olson,*Review of computing methods for recirculating flows*, J. Comput. Phys.**29**(1978), no. 1, 1–19. MR**510458**, https://doi.org/10.1016/0021-9991(78)90105-5**[11]**R. Schreiber and H. B. Keller,*Spurious solutions in driven cavity calculations*, J. Comput. Phys.**49**(1983), no. 1, 165–172. MR**694162**, https://doi.org/10.1016/0021-9991(83)90119-5

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76D05

Retrieve articles in all journals with MSC: 65N30, 76-08, 76D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829614-2

Article copyright:
© Copyright 1986
American Mathematical Society