Newton's method for the matrix square root

Author:
Nicholas J. Higham

Journal:
Math. Comp. **46** (1986), 537-549

MSC:
Primary 65F30; Secondary 65H10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829624-5

MathSciNet review:
829624

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One approach to computing a square root of a matrix *A* is to apply Newton's method to the quadratic matrix equation . Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simplified iterations are numerically unstable. A further variant of Newton's method for the matrix square root, recently proposed in the literature, is shown to be, for practical purposes, numerically stable.

**[1]**R. H. Bartels & G. W. Stewart, "Solution of the matrix equation ,"*Comm. ACM*, v. 15, 1972, pp. 820-826.**[2]**Å. Björck & S. Hammarling, "A Schur method for the square root of a matrix,"*Linear Algebra Appl.*, v. 52/53, 1983, pp. 127-140. MR**709347 (84h:65043)****[3]**E. D. Denman, "Roots of real matrices,"*Linear Algebra Appl.*, v. 36, 1981, pp. 133-139. MR**604336 (82f:65042)****[4]**E. D. Denman & A. N. Beavers, "The matrix sign function and computations in systems,"*Appl. Math. Comput.*, v. 2, 1976, pp. 63-94. MR**0393075 (52:13886)****[5]**F. R. Gantmacher,*The Theory of Matrices*, Vol. I, Chelsea, New York, 1959.**[6]**G. H. Golub, S. Nash & C. F. Van Loan, "A Hessenberg-Schur method for the problem ,"*IEEE Trans. Automat. Control*, v. AC-24, 1979, pp. 909-913. MR**566448 (81a:65046)****[7]**G. H. Golub & C. F. Van Loan,*Matrix Computations*, Johns Hopkins Univ. Press, Baltimore, Maryland, 1983. MR**733103 (85h:65063)****[8]**R. T. Gregory & D. L. Karney,*A Collection of Matrices for Testing Computational Algorithms*, Wiley, New York, 1969. MR**0253538 (40:6752)****[9]**N. J. Higham,*Computing Real Square Roots of a Real Matrix*, Numerical Analysis Report No. 89, University of Manchester, 1984;*Linear Algebra Appl.*(To appear.) MR**882456 (88m:65069)****[10]**N. J. Higham,*Computing the Polar Decomposition-With Applications*, Numerical Analysis Report No. 94, University of Manchester, 1984;*SIAM J. Sci. Statist. Comput.*(To appear.) MR**857788 (87m:65064)****[11]**W. D. Hoskins & D. J. Walton, "A faster method of computing the square root of a matrix,"*IEEE Trans. Automat. Control*, v. AC-23, 1978, pp. 494-495.**[12]**W. D. Hoskins & D. J. Walton, "A faster, more stable method for computing the*p*th roots of positive definite matrices,"*Linear Algebra Appl.*, v. 26, 1979, pp. 139-163. MR**535683 (80f:65047)****[13]**P. Laasonen, "On the iterative solution of the matrix equation ,"*M.T.A.C.*, v. 12, 1958, pp. 109-116. MR**0099107 (20:5551)****[14]**J. M. Ortega,*Numerical Analysis*:*A Second Course*, Academic Press, New York, 1972. MR**0403154 (53:6967)****[15]**G. W. Stewart,*Introduction to Matrix Computations*, Academic Press, New York, 1973. MR**0458818 (56:17018)****[16]**C.-E. Fröberg,*Introduction to Numerical Analysis*, 2nd ed., Addison-Wesley, Reading, Mass., 1969. MR**0245168 (39:6480)****[17]**P. Henrici,*Elements of Numerical Analysis*, Wiley, New York, 1964. MR**0166900 (29:4173)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F30,
65H10

Retrieve articles in all journals with MSC: 65F30, 65H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829624-5

Keywords:
Matrix square root,
Newton's method,
numerical stability

Article copyright:
© Copyright 1986
American Mathematical Society