Newton's method for the matrix square root

Author:
Nicholas J. Higham

Journal:
Math. Comp. **46** (1986), 537-549

MSC:
Primary 65F30; Secondary 65H10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829624-5

MathSciNet review:
829624

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One approach to computing a square root of a matrix *A* is to apply Newton's method to the quadratic matrix equation . Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simplified iterations are numerically unstable. A further variant of Newton's method for the matrix square root, recently proposed in the literature, is shown to be, for practical purposes, numerically stable.

**[1]**R. H. Bartels & G. W. Stewart, "Solution of the matrix equation ,"*Comm. ACM*, v. 15, 1972, pp. 820-826.**[2]**È¦ke Björck and Sven Hammarling,*A Schur method for the square root of a matrix*, Linear Algebra Appl.**52/53**(1983), 127–140. MR**709347**, https://doi.org/10.1016/0024-3795(83)80010-X**[3]**Eugene D. Denman,*Roots of real matrices*, Linear Algebra Appl.**36**(1981), 133–139. MR**604336**, https://doi.org/10.1016/0024-3795(81)90226-3**[4]**Eugene D. Denman and Alex N. Beavers Jr.,*The matrix sign function and computations in systems*, Appl. Math. Comput.**2**(1976), no. 1, 63–94. MR**0393075**, https://doi.org/10.1016/0096-3003(76)90020-5**[5]**F. R. Gantmacher,*The Theory of Matrices*, Vol. I, Chelsea, New York, 1959.**[6]**G. H. Golub, S. Nash, and C. Van Loan,*A Hessenberg-Schur method for the problem 𝐴𝑋+𝑋𝐵=𝐶*, IEEE Trans. Automat. Control**24**(1979), no. 6, 909–913. MR**566448**, https://doi.org/10.1109/TAC.1979.1102170**[7]**Gene H. Golub and Charles F. Van Loan,*Matrix computations*, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103****[8]**Robert T. Gregory and David L. Karney,*A collection of matrices for testing computational algorithms*, Wiley-Interscience A Division of John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR**0253538****[9]**Nicholas J. Higham,*Computing real square roots of a real matrix*, Linear Algebra Appl.**88/89**(1987), 405–430. MR**882456**, https://doi.org/10.1016/0024-3795(87)90118-2**[10]**Nicholas J. Higham,*Computing the polar decomposition—with applications*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 4, 1160–1174. MR**857788**, https://doi.org/10.1137/0907079**[11]**W. D. Hoskins & D. J. Walton, "A faster method of computing the square root of a matrix,"*IEEE Trans. Automat. Control*, v. AC-23, 1978, pp. 494-495.**[12]**W. D. Hoskins and D. J. Walton,*A faster, more stable method for computing the 𝑝th roots of positive definite matrices*, Linear Algebra Appl.**26**(1979), 139–163. MR**535683**, https://doi.org/10.1016/0024-3795(79)90176-9**[13]**Pentti Laasonen,*On the iterative solution of the matrix equation 𝐴𝑋²-𝐼=0*, Math. Tables Aids Comput.**12**(1958), 109–116. MR**0099107**, https://doi.org/10.1090/S0025-5718-1958-0099107-4**[14]**James M. Ortega,*Numerical analysis. A second course*, Academic Press, New York-London, 1972. Computer Science and Applied Mathematics. MR**0403154****[15]**G. W. Stewart,*Introduction to matrix computations*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Computer Science and Applied Mathematics. MR**0458818****[16]**Carl-Erik Fröberg,*Introduction to numerical analysis*, Second edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0245168****[17]**Peter Henrici,*Elements of numerical analysis*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0166900**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F30,
65H10

Retrieve articles in all journals with MSC: 65F30, 65H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829624-5

Keywords:
Matrix square root,
Newton's method,
numerical stability

Article copyright:
© Copyright 1986
American Mathematical Society