Least squares approximation with constraints

Authors:
Gradimir V. Milovanović and Staffan Wrigge

Journal:
Math. Comp. **46** (1986), 551-565

MSC:
Primary 65D15; Secondary 41A30

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829625-7

Corrigendum:
Math. Comp. **48** (1987), 854.

MathSciNet review:
829625

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study two families of functions and , and show how to approximate the functions in the interval . The functions are assumed to be real when the argument is real. We define

*m*such that the polynomials belong to the set if

*m*is even and to the set if

*m*is odd.

We determine the least squares approximation for the function (or ) in the class (or ), with respect to the norm , where the inner product is defined by , with and .

We also consider the general case when *f* is neither an even nor an odd function but and .

Using the theory of Gegenbauer polynomials we obtain the approximating polynomials in the form

We apply the general theory to the functions and , where .

**[1]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604****[2]**Alexander Apelblat,*Table of definite and infinite integrals*, Physical Sciences Data, vol. 13, Elsevier Scientific Publishing Co., Amsterdam, 1983. MR**902582****[3]**A. Erdélyi et al.,*Higher Transcendental Functions*, Vol. II, McGraw-Hill, New York, 1953.**[4]**Walter Gautschi and Richard S. Varga,*Error bounds for Gaussian quadrature of analytic functions*, SIAM J. Numer. Anal.**20**(1983), no. 6, 1170–1186. MR**723834**, https://doi.org/10.1137/0720087**[5]**I. S. Gradshteyn & I. M. Ryzhik,*Tables of Integrals, Series, and Products*, Academic Press, New York, 1980.**[6]**Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968****[7]**Branko D. Rakovich and Petar M. Vasić,*Some new sums for orthogonal polynomials involved in filter synthesis*, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.**544–576**(1976), 8–12. MR**0440093****[8]**Theodore J. Rivlin,*An introduction to the approximation of functions*, Dover Publications, Inc., New York, 1981. Corrected reprint of the 1969 original; Dover Books on Advanced Mathematics. MR**634509****[9]**H. V. Smith,*Global error bounds for Gauss-Gegenbauer quadrature*, BIT**21**(1981), no. 4, 481–490. MR**644688**, https://doi.org/10.1007/BF01932845**[10]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939.**[11]**S. Wrigge,*A General Method of Approximation Associated with Bernstein Polynomials*, FOA Rapport, C 10170-M8, December 1980, National Defence Research Institute, S-10450 Stockholm, Sweden.**[12]**Staffan Wrigge and Arne Fransén,*A general method of approximation. I*, Math. Comp.**38**(1982), no. 158, 567–588. MR**645672**, https://doi.org/10.1090/S0025-5718-1982-0645672-9**[13]**F. Zironi,*Multiple precision computation of some zeros of Bessel functions by rigorous explicit formulae*, Calcolo**18**(1981), no. 4, 321–335 (1982). MR**656810**, https://doi.org/10.1007/BF02576434

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15,
41A30

Retrieve articles in all journals with MSC: 65D15, 41A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829625-7

Keywords:
Approximation theory,
Gegenbauer polynomials

Article copyright:
© Copyright 1986
American Mathematical Society