A remark on a theorem of W. E. H. Berwick

Author:
Nicholas Tzanakis

Journal:
Math. Comp. **46** (1986), 623-625

MSC:
Primary 11R27; Secondary 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829633-6

MathSciNet review:
829633

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We indicate and fill a gap in a theorem of W. E. H. Berwick concerning the computation of the fundamental units in a semireal biquadratic field.

**[1]**W. E. H. Berwick, "Algebraic number fields with two independent units,"*Proc. London Math. Soc.*, v. 34, 1932, pp. 360-378.**[2]**A. Bremner & N. Tzanakis, "Integral points on ,"*Math. Comp.*, v. 41, 1983, pp. 731-741. MR**717717 (85c:11028)****[3]**F. B. Coghlan & N. M. Stephens, "The diophantine equation ," in*Computers in Number Theory*, Atlas Symps. No. 2 at Oxford 1969, Academic Press, New York, 1971, pp. 199-205. MR**0314733 (47:3285)****[4]**R. Steiner,*On the Units in Algebraic Number Fields*, Proc. 6th Manitoba Conf. Numer. Math., 1976, p. 413-435. MR**532716 (81b:12008)****[5]**R. J. Stroeker, "On a diophantine equation of E. Bombieri,"*Nederl. Akad. Wetensch. Proc. Ser. A*, v. 80 =*Indag. Math.*, v. 39, 1977, pp. 131-139. MR**0437449 (55:10379)****[6]**R. J. Stroeker, "On the diophantine equation ,"*Nieuw Arch. Wisk.*(3), v. 24, 1976, pp. 231-255. MR**0437448 (55:10378)****[7]**N. Tzanakis, "On the diophantine equation ,"*Manuscripta Math.*, v. 54, 1985, pp. 145-164. MR**808685 (87c:11024)****[8]**N. Tzanakis, "On the diophantine equation ,"*Acta Arith.*, v. 46, No. 3. (To appear.) MR**864261 (87k:11031)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R27,
11Y40

Retrieve articles in all journals with MSC: 11R27, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829633-6

Article copyright:
© Copyright 1986
American Mathematical Society