A remark on a theorem of W. E. H. Berwick
Author:
Nicholas Tzanakis
Journal:
Math. Comp. 46 (1986), 623625
MSC:
Primary 11R27; Secondary 11Y40
MathSciNet review:
829633
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We indicate and fill a gap in a theorem of W. E. H. Berwick concerning the computation of the fundamental units in a semireal biquadratic field.
 [1]
W. E. H. Berwick, "Algebraic number fields with two independent units," Proc. London Math. Soc., v. 34, 1932, pp. 360378.
 [2]
Andrew
Bremner and Nicholas
Tzanakis, Integer points on
𝑦²=𝑥³7𝑥+10, Math. Comp. 41 (1983), no. 164, 731–741. MR 717717
(85c:11028), http://dx.doi.org/10.1090/S0025571819830717717X
 [3]
A.
O. L. Atkin and B.
J. Birch (eds.), Computers in number theory, Academic Press,
LondonNew York, 1971. MR 0314733
(47 #3285)
 [4]
Ray
Steiner, On the units in algebraic number fields, Proceedings
of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba,
Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math., Winnipeg,
Man., 1977, pp. 413–435. MR 532716
(81b:12008)
 [5]
R.
J. Stroeker, On a diophantine equation of E. Bombieri: “Sulle
soluzioni intere dell’equazione
4𝑥³=27𝑦²+𝑁” (Riv. Mat. Univ. Parma
8 (1957), 199–206), Nederl. Akad. Wetensch. Proc. Ser. A
80=Indag. Math. 39 (1977), no. 2, 131–139. MR 0437449
(55 #10379)
 [6]
R.
J. Stroeker, On the Diophantine equation
𝑥³𝐷𝑦²=1, Nieuw Arch. Wisk. (3)
24 (1976), no. 3, 231–255. MR 0437448
(55 #10378)
 [7]
Nicholas
Tzanakis, On the Diophantine equation
2𝑥³+1=𝑝𝑦², Manuscripta Math.
54 (1985), no. 12, 145–164. MR 808685
(87c:11024), http://dx.doi.org/10.1007/BF01171704
 [8]
Nikos
Tzanakis, On the Diophantine equation
𝑥²𝐷𝑦⁴=𝑘, Acta Arith.
46 (1986), no. 3, 257–269. MR 864261
(87k:11031)
 [1]
 W. E. H. Berwick, "Algebraic number fields with two independent units," Proc. London Math. Soc., v. 34, 1932, pp. 360378.
 [2]
 A. Bremner & N. Tzanakis, "Integral points on ," Math. Comp., v. 41, 1983, pp. 731741. MR 717717 (85c:11028)
 [3]
 F. B. Coghlan & N. M. Stephens, "The diophantine equation ," in Computers in Number Theory, Atlas Symps. No. 2 at Oxford 1969, Academic Press, New York, 1971, pp. 199205. MR 0314733 (47:3285)
 [4]
 R. Steiner, On the Units in Algebraic Number Fields, Proc. 6th Manitoba Conf. Numer. Math., 1976, p. 413435. MR 532716 (81b:12008)
 [5]
 R. J. Stroeker, "On a diophantine equation of E. Bombieri," Nederl. Akad. Wetensch. Proc. Ser. A, v. 80 = Indag. Math., v. 39, 1977, pp. 131139. MR 0437449 (55:10379)
 [6]
 R. J. Stroeker, "On the diophantine equation ," Nieuw Arch. Wisk. (3), v. 24, 1976, pp. 231255. MR 0437448 (55:10378)
 [7]
 N. Tzanakis, "On the diophantine equation ," Manuscripta Math., v. 54, 1985, pp. 145164. MR 808685 (87c:11024)
 [8]
 N. Tzanakis, "On the diophantine equation ," Acta Arith., v. 46, No. 3. (To appear.) MR 864261 (87k:11031)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R27,
11Y40
Retrieve articles in all journals
with MSC:
11R27,
11Y40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198608296336
PII:
S 00255718(1986)08296336
Article copyright:
© Copyright 1986
American Mathematical Society
