A remark on a theorem of W. E. H. Berwick
Author:
Nicholas Tzanakis
Journal:
Math. Comp. 46 (1986), 623625
MSC:
Primary 11R27; Secondary 11Y40
MathSciNet review:
829633
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We indicate and fill a gap in a theorem of W. E. H. Berwick concerning the computation of the fundamental units in a semireal biquadratic field.
 [1]
W. E. H. Berwick, "Algebraic number fields with two independent units," Proc. London Math. Soc., v. 34, 1932, pp. 360378.
 [2]
Andrew
Bremner and Nicholas
Tzanakis, Integer points on
𝑦²=𝑥³7𝑥+10, Math. Comp. 41 (1983), no. 164, 731–741. MR 717717
(85c:11028), http://dx.doi.org/10.1090/S0025571819830717717X
 [3]
A.
O. L. Atkin and B.
J. Birch (eds.), Computers in number theory, Academic Press,
London, 1971. MR
0314733 (47 #3285)
 [4]
Ray
Steiner, On the units in algebraic number fields, (Univ.
Manitoba, Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math.,
Winnipeg, Man., 1977, pp. 413–435. MR 532716
(81b:12008)
 [5]
R.
J. Stroeker, On a diophantine equation of E. Bombieri: “Sulle
soluzioni intere dell’equazione
4𝑥³=27𝑦²+𝑁” (Riv. Mat. Univ. Parma
8 (1957), 199–206), Nederl. Akad. Wetensch. Proc. Ser. A
80=Indag. Math. 39 (1977), no. 2, 131–139. MR 0437449
(55 #10379)
 [6]
R.
J. Stroeker, On the Diophantine equation
𝑥³𝐷𝑦²=1, Nieuw Arch. Wisk. (3)
24 (1976), no. 3, 231–255. MR 0437448
(55 #10378)
 [7]
Nicholas
Tzanakis, On the Diophantine equation
2𝑥³+1=𝑝𝑦², Manuscripta Math.
54 (1985), no. 12, 145–164. MR 808685
(87c:11024), http://dx.doi.org/10.1007/BF01171704
 [8]
Nikos
Tzanakis, On the Diophantine equation
𝑥²𝐷𝑦⁴=𝑘, Acta Arith.
46 (1986), no. 3, 257–269. MR 864261
(87k:11031)
 [1]
 W. E. H. Berwick, "Algebraic number fields with two independent units," Proc. London Math. Soc., v. 34, 1932, pp. 360378.
 [2]
 A. Bremner & N. Tzanakis, "Integral points on ," Math. Comp., v. 41, 1983, pp. 731741. MR 717717 (85c:11028)
 [3]
 F. B. Coghlan & N. M. Stephens, "The diophantine equation ," in Computers in Number Theory, Atlas Symps. No. 2 at Oxford 1969, Academic Press, New York, 1971, pp. 199205. MR 0314733 (47:3285)
 [4]
 R. Steiner, On the Units in Algebraic Number Fields, Proc. 6th Manitoba Conf. Numer. Math., 1976, p. 413435. MR 532716 (81b:12008)
 [5]
 R. J. Stroeker, "On a diophantine equation of E. Bombieri," Nederl. Akad. Wetensch. Proc. Ser. A, v. 80 = Indag. Math., v. 39, 1977, pp. 131139. MR 0437449 (55:10379)
 [6]
 R. J. Stroeker, "On the diophantine equation ," Nieuw Arch. Wisk. (3), v. 24, 1976, pp. 231255. MR 0437448 (55:10378)
 [7]
 N. Tzanakis, "On the diophantine equation ," Manuscripta Math., v. 54, 1985, pp. 145164. MR 808685 (87c:11024)
 [8]
 N. Tzanakis, "On the diophantine equation ," Acta Arith., v. 46, No. 3. (To appear.) MR 864261 (87k:11031)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R27,
11Y40
Retrieve articles in all journals
with MSC:
11R27,
11Y40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198608296336
PII:
S 00255718(1986)08296336
Article copyright:
© Copyright 1986 American Mathematical Society
