Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A lower bound for the class number of certain cubic number fields


Author: G√ľnter Lettl
Journal: Math. Comp. 46 (1986), 659-666
MSC: Primary 11R16; Secondary 11R29
DOI: https://doi.org/10.1090/S0025-5718-1986-0829636-1
MathSciNet review: 829636
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a cyclic number field with generating polynomial

$\displaystyle {X^3} - \frac{{a - 3}}{2}{X^2} - \frac{{a + 3}}{2}X - 1$

and conductor m. We will derive a lower bound for the class number of these fields and list all such fields with prime conductor $ m = ({a^2} + 27)/4$ or $ m = (1 + 27{b^2})/4$ and small class number.

References [Enhancements On Off] (What's this?)

  • [1] N. C. Ankeny, S. Chowla & H. Hasse, "On the class-number of the maximal real subfield of a cyclotomic field," J. Reine Angew. Math., v. 217, 1965, pp. 217-220. MR 0172861 (30:3078)
  • [2] A. Châtelet, "Arithmétique des corps abéliens du troisième degré," Ann. Sci. École Norm. Sup. (3), v. 63, 1946, pp. 109-160. MR 0020598 (8:568a)
  • [3] G. Cornell & L. C. Washington, "Class numbers of cyclotomic fields," J. Number Theory, v. 21, 1985, pp. 260-274. MR 814005 (87d:11079)
  • [4] M.-N. Gras, Sur le Nombre de Classes du Sous-Corps Cubique de $ {{\mathbf{Q}}^{(p)}}\;(p \equiv 1\;(3))$, Thèse, Grenoble, 1971.
  • [5] M.-N. Gras, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q," J. Reine Angew. Math., v. 277, 1975, pp. 89-116. MR 0389845 (52:10675)
  • [6] M.-N. Gras, "Note a propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques," Ann. Inst. Fourier (Grenoble), v. 30/4, 1980, pp. 1-6. MR 599620 (82f:12006)
  • [7] G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, New York, 1979. MR 568909 (81i:10002)
  • [8] H. Hasse, "Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern," Abh. Deutsch. Akad. Wiss. Berlin Math.-Nat. Kl., 1948, Nr. 2, 95 pp. MR 0033863 (11:503d)
  • [9] S.-D. Lang, "Note on the class-number of the maximal real subfield of a cyclotomic field", J. Reine Angew. Math., v. 290, 1977, pp. 70-72. MR 0447177 (56:5492)
  • [10] F. J. van der Linden, "Class number computations of real abelian number fields," Math. Comp., v. 39, 1982, pp. 693-707. MR 669662 (84e:12005)
  • [11] C. Moser, Sur le Nombre de Classes d'un Corps K Réel Cyclique de Conducteur Premier, $ \deg K \geqslant 4$, Seminaire Théorie des Nombres, Grenoble, 1980, 17 pp.
  • [12] E. Seah, L. C. Washington & H. C. Williams, "The calculation of a large cubic class number with an application to real cyclotomic fields", Math. Comp., v. 41, 1983, pp. 303-305. MR 701641 (84m:12008)
  • [13] D. Shanks, "The simplest cubic fields," Math. Comp., v. 28, 1974, pp. 1137-1152. MR 0352049 (50:4537)
  • [14] H. M. Stark, "Some effective cases of the Brauer-Siegel Theorem," Invent. Math., v. 23, 1974, pp. 135-152. MR 0342472 (49:7218)
  • [15] H. Takeuchi, "On the class-number of the maximal real subfield of a cyclotomic field," Canad. J. Math., v. 33, 1981, pp. 55-58. MR 608854 (82f:12011)
  • [16] L. C. Washington, Introduction to Cyclotomic Fields, GTM 83, Springer, New York, 1982. MR 718674 (85g:11001)
  • [17] H. Yokoi, "On the diophantine equation $ {x^2} - p{y^2} = \pm 4q$ and the class number of real subfields of a cyclotomic field," Nagoya Math. J., v. 91, 1983, pp. 151-161. MR 716789 (85b:11098)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R16, 11R29

Retrieve articles in all journals with MSC: 11R16, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0829636-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society