On the zeros of the Riemann zeta function in the critical strip. IV
Authors:
J. van de Lune, H. J. J. te Riele and D. T. Winter
Journal:
Math. Comp. 46 (1986), 667681
MSC:
Primary 11M26; Secondary 1104, 11Y35, 30C15
MathSciNet review:
829637
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Very extensive computations are reported which extend and, partly, check previous computations concerning the location of the complex zeros of the Riemann zeta function. The results imply the truth of the Riemann hypothesis for the first 1,500,000,001 zeros of the form in the critical strip with , i.e., all these zeros have real part . Moreover, all these zeros are simple. Various tables are given with statistical data concerning the numbers and first occurrences of Gram blocks of various types; the numbers of Gram intervals containing m zeros, for and 4; and the numbers of exceptions to "Rosser's rule" of various types (including some formerly unobserved types). Graphs of the function are given near five rarely occurring exceptions to Rosser's rule, near the first Gram block of length 9, near the closest observed pair of zeros of the Riemann zeta function, and near the largest (positive and negative) found values of at Gram points. Finally, a number of references are given to various numbertheoretical implications.
 [1]
Richard
P. Brent, On the zeros of the Riemann zeta
function in the critical strip, Math. Comp.
33 (1979), no. 148, 1361–1372. MR 537983
(80g:10033), http://dx.doi.org/10.1090/S00255718197905379832
 [2]
R.
P. Brent, J.
van de Lune, H.
J. J. te Riele, and D.
T. Winter, On the zeros of the Riemann zeta
function in the critical strip. II, Math.
Comp. 39 (1982), no. 160, 681–688. MR 669660
(83m:10067), http://dx.doi.org/10.1090/S00255718198206696601
 [3]
E.
Karkoschka and P.
Werner, Einige Ausnahmen zur Rosserschen Regel in der Theorie der
Riemannschen Zetafunktion, Computing 27 (1981),
no. 1, 57–69 (German, with English summary). MR 623176
(82i:10048), http://dx.doi.org/10.1007/BF02243438
 [4]
I.
Kátai, On oscillations of numbertheoretic functions,
Acta Arith. 13 (1967/1968), 107–122. MR 0219496
(36 #2577)
 [5]
R.
Sherman Lehman, On the difference
𝜋(𝑥)𝑙𝑖(𝑥), Acta Arith.
11 (1966), 397–410. MR 0202686
(34 #2546)
 [6]
J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, October, 1981.
 [7]
J.
van de Lune and H.
J. J. te Riele, On the zeros of the Riemann zeta
function in the critical strip. III, Math.
Comp. 41 (1983), no. 164, 759–767. MR 717719
(85e:11062), http://dx.doi.org/10.1090/S00255718198307177193
 [8]
János
Pintz, On the sign changes of
𝑀(𝑥)=∑_{𝑛≤𝑥}𝜇(𝑛),
Analysis 1 (1981), no. 3, 191–195. MR 660714
(83i:10052), http://dx.doi.org/10.1524/anly.1981.1.3.191
 [9]
H. J. J. te Riele, D. T. Winter & J. van de Lune, Numerical Verification of the Riemann Hypothesis on the CYBER 205, in: Proc. International Supercomputer Applications Symp. (A. Emmen, ed.), NorthHolland, Amsterdam, 1985, pp. 3338.
 [10]
J.
Barkley Rosser and Lowell
Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
(25 #1139)
 [11]
J.
Barkley Rosser and Lowell
Schoenfeld, Sharper bounds for the Chebyshev
functions 𝜃(𝑥) and 𝜓(𝑥), Math. Comp. 29 (1975), 243–269.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0457373
(56 #15581a), http://dx.doi.org/10.1090/S00255718197504573737
 [12]
Lowell
Schoenfeld, Sharper bounds for the Chebyshev
functions 𝜃(𝑥) and 𝜓(𝑥). II, Math. Comp. 30 (1976), no. 134, 337–360. MR 0457374
(56 #15581b), http://dx.doi.org/10.1090/S0025571819760457374X
 [13]
Lowell
Schoenfeld, An improved estimate for the summatory function of the
Möbius function, Acta Arith. 15 (1968/1969),
221–233. MR 0241376
(39 #2716)
 [14]
D. T. Winter & H. J. J. te Riele, "Optimization of a program for the verification of the Riemann hypothesis," Supercomputer, v. 5, 1985, pp. 2932.
 [1]
 R. P. Brent, "On the zeros of the Riemann zeta function in the critical strip," Math. Comp., v. 33, 1979, pp. 13611372. MR 537983 (80g:10033)
 [2]
 R. P. Brent, J. van de Lune, H. J. J. te Riele & D. T. Winter, "On the zeros of the Riemann zeta function in the critical strip. II," Math. Comp., v. 39, 1982, pp. 681688. MR 669660 (83m:10067)
 [3]
 E. Karkoschka & P. Werner, "Einige Ausnahmen zur Rosserschen Regel in der Theorie der Riemannschen Zetafunktion," Computing, v. 27, 1981, pp. 5769. MR 623176 (82i:10048)
 [4]
 I. Katai, "On oscillations of numbertheoretic functions," Acta Arith., v. 13, 1967, pp. 107122. MR 0219496 (36:2577)
 [5]
 R. S. Lehman, "On the difference ," Acta Arith., v. 11, 1966, pp. 397410. MR 0202686 (34:2546)
 [6]
 J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, October, 1981.
 [7]
 J. van de Lune & H. J. J. te Riele, "On the zeros of the Riemann zeta function in the critical strip. III," Math. Comp., v. 41, 1983, pp. 759767. MR 717719 (85e:11062)
 [8]
 J. Pintz, "On the sign changes of ," Analysis, v. 1, 1981, pp. 191195. MR 660714 (83i:10052)
 [9]
 H. J. J. te Riele, D. T. Winter & J. van de Lune, Numerical Verification of the Riemann Hypothesis on the CYBER 205, in: Proc. International Supercomputer Applications Symp. (A. Emmen, ed.), NorthHolland, Amsterdam, 1985, pp. 3338.
 [10]
 J. B. Rosser & L. Schoenfeld, "Approximate formulas for functions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 6494. MR 0137689 (25:1139)
 [11]
 J. B. Rosser & L. Schoenfeld, "Sharper bounds for the Chebyshev functions and ," Math. Comp., v. 29, 1975, pp. 243269. MR 0457373 (56:15581a)
 [12]
 L. Schoenfeld, "Sharper bounds for the Chebyshev functions and . II," Math. Comp., v. 30, 1976, pp. 337360. MR 0457374 (56:15581b)
 [13]
 L. Schoenfeld, "An improved estimate for the summatory function of the Moebius function," Acta Arith., v. 15, 1969, pp. 221233. MR 0241376 (39:2716)
 [14]
 D. T. Winter & H. J. J. te Riele, "Optimization of a program for the verification of the Riemann hypothesis," Supercomputer, v. 5, 1985, pp. 2932.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11M26,
1104,
11Y35,
30C15
Retrieve articles in all journals
with MSC:
11M26,
1104,
11Y35,
30C15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198608296373
PII:
S 00255718(1986)08296373
Keywords:
Riemann hypothesis,
Riemann zeta function,
Gram blocks,
Rosser's rule
Article copyright:
© Copyright 1986
American Mathematical Society
