Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations

Authors:
Claes Johnson and Jukka Saranen

Journal:
Math. Comp. **47** (1986), 1-18

MSC:
Primary 65N30; Secondary 76-08, 76D05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842120-4

MathSciNet review:
842120

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present and analyze extensions of the streamline diffusion finite element method to the time-dependent two-dimensional Navier-Stokes equations for an incompressible fluid in the case of high Reynolds numbers. The limit case with zero viscosity, the Euler equations, is also considered.

**[1]**J. Thomas Beale and Andrew Majda,*Vortex methods. II. Higher order accuracy in two and three dimensions*, Math. Comp.**39**(1982), no. 159, 29–52. MR**658213**, https://doi.org/10.1090/S0025-5718-1982-0658213-7**[2]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[3]**Kenneth Eriksson, Claes Johnson, and Vidar Thomée,*Time discretization of parabolic problems by the discontinuous Galerkin method*, RAIRO Modél. Math. Anal. Numér.**19**(1985), no. 4, 611–643 (English, with French summary). MR**826227**, https://doi.org/10.1051/m2an/1985190406111**[4]**V. Girault and P.-A. Raviart,*An analysis of a mixed finite element method for the Navier-Stokes equations*, Numer. Math.**33**(1979), no. 3, 235–271. MR**553589**, https://doi.org/10.1007/BF01398643**[5]**T. J. Hughes & A. Brooks, "A multidimensional upwind scheme with no crosswind diffusion," in AMD, v. 34,*Finite Element Methods for Convection Dominated Flows*(T. J. Hughes, ed.), ASME, New York, 1979.**[6]**T. J. Hughes & A. Brooks, "A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure,"*Finite Elements in Fluids*, Vol. 4 (R. H. Gallagher, ed.), Wiley, New York, 1982.**[7]**T. J. Hughes, E. T. Tezduyar & A. Brooks,*Streamline Upwind Formulation for Advection-Diffusion, Navier-Stokes and First Order Hyperbolic Equations*, Fourth Internat. Conf. on Finite Element Methods in Fluids, Tokyo, July, 1982.**[8]**O. Axelsson, L. S. Frank, and A. van der Sluis (eds.),*Analytical and numerical approaches to asymptotic problems in analysis*, North-Holland Mathematics Studies, vol. 47, North-Holland Publishing Co., Amsterdam-New York, 1981. MR**605494****[9]**Claes Johnson,*Finite element methods for convection-diffusion problems*, Computing methods in applied sciences and engineering, V (Versailles, 1981) North-Holland, Amsterdam, 1982, pp. 311–323. MR**784648****[10]**C. Johnson, U. Nävert & J. Pitkäranta, "Finite element methods for linear hyperbolic problems,"*Comput. Methods Appl. Mech. Engrg.*, v. 45, 1985, pp. 285-312.**[11]**C. Johnson and J. Pitkäranta,*An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation*, Math. Comp.**46**(1986), no. 173, 1–26. MR**815828**, https://doi.org/10.1090/S0025-5718-1986-0815828-4**[12]**C. Johnson,*Error Estimates and Automatic Time Step Control for Numerical Methods for Stiff Ordinary Differential Equations*, Technical report, Chalmers Univ. of Technology, Göteborg, 1984.**[13]**P. Lesaint,*Sur la Résolution des Systèmes Hyperboliques du Premier Ordre par des Méthodes d'Élements Finis*, Thèse, Université Paris VI, 1975.**[14]**P. Lasaint and P.-A. Raviart,*On a finite element method for solving the neutron transport equation*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33. MR**0658142****[15]**J. L. Lions,*Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires*, Dunod, Paris, 1969.**[16]**U. Nävert,*A Finite Element for Convection-Diffusion Problems*, Thesis, Chalmers Univ. of Technology, Göteborg, 1982.**[17]**R. Temam,*Local existence of 𝐶^{∞} solutions of the Euler equations of incompressible perfect fluids*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 184–194. Lecture Notes in Math., Vol. 565. MR**0467033**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
76-08,
76D05

Retrieve articles in all journals with MSC: 65N30, 76-08, 76D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842120-4

Keywords:
Finite element method,
incompressible flow,
time-dependent,
high Reynolds number

Article copyright:
© Copyright 1986
American Mathematical Society