Explicit, nearly optimal, linear rational approximation with preassigned poles

Author:
Frank Stenger

Journal:
Math. Comp. **47** (1986), 225-252

MSC:
Primary 41A20; Secondary 41A25, 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842132-0

MathSciNet review:
842132

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives explicit rational functions for interpolating and approximating functions on the intervals , , and . The rational functions are linear in the functions to be approximated, and they have preassigned poles. The error of approximation of these rationals is nearly as small as the error of best rational approximation with numerator and denominator polynomials of the same degrees. Regions of analyticity are described, which make it possible to tell *a priori* the accuracy which we can expect from this type of rational approximation.

**[1]**Richard Askey,*Orthogonal polynomials and special functions*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR**0481145****[2]**Jan-Erik Andersson,*Optimal quadrature of 𝐻^{𝑝} functions*, Math. Z.**172**(1980), no. 1, 55–62. MR**576296**, https://doi.org/10.1007/BF01182779**[3]**D. W. Barclay, J. B. Moodie & J. B. Haddow, "Analysis of unloading waves from suddenly punched hole in an axially loaded elastic plate,"*Wave Motion*, v. 3, 1981, pp. 105-113.**[4]**Peter B. Borwein,*Approximations with negative roots and poles*, J. Approx. Theory**35**(1982), no. 2, 132–141. MR**662161**, https://doi.org/10.1016/0021-9045(82)90031-4**[5]**H. G. Burchard and K. Höllig,*𝑁-width and entropy of 𝐻_{𝑝}-classes in 𝐿_{𝑞}(-1,1)*, SIAM J. Math. Anal.**16**(1985), no. 2, 405–421. MR**777476**, https://doi.org/10.1137/0516029**[6]**W. Cauer,*Bemerkung über eine Extremalaufgabe von E. Zolotareff*, Z. Angew. Math. Mech.**20**(1940), 358 (German). MR**0008747**, https://doi.org/10.1002/zamm.19400200606**[7]**Tord Ganelius,*Rational approximation in the complex plane and on the line*, Ann. Acad. Sci. Fenn. Ser. A I Math.**2**(1976), 129–145. MR**0499176****[8]**Walter Gautschi,*Computational methods in special functions—a survey*, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York, 1975, pp. 1–98. Math. Res. Center, Univ. Wisconsin Publ., No. 35. MR**0391476****[9]**P. R. Graves-Morris,*Efficient reliable rational interpolation*, Padé approximation and its applications, Amsterdam 1980 (Amsterdam, 1980), Lecture Notes in Math., vol. 888, Springer, Berlin-New York, 1981, pp. 28–63. MR**649084****[10]**Peter Henrici,*Applied and computational complex analysis. Vol. 2*, Wiley Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR**0453984****[11]**Peter Henrici,*Essentials of numerical analysis with pocket calculator demonstrations*, John Wiley & Sons, Inc., New York, 1982. MR**655251****[12]**J. R. Lund,*Numerical Evaluation of Integral Transforms*, Ph.D. Thesis, University of Utah, 1978.**[13]**Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968****[14]**National Bureau of Standards,*Handbook of Mathematical Functions*, N.B.S. Applied Math. Series, vol. 55, 1964.**[15]**D. J. Newman,*Rational approximation to |𝑥|*, Michigan Math. J.**11**(1964), 11–14. MR**0171113****[16]**Donald J. Newman,*Approximation with rational functions*, CBMS Regional Conference Series in Mathematics, vol. 41, Conference Board of the Mathematical Sciences, Washington, D.C., 1979. Expository lectures from the CBMS Regional Conference held at the University of Rhode Island, Providence, R.I., June 12–16, 1978. MR**539314****[17]**H. Padé, "Sur la représentation approchée d'une fonction par des fractions rationelles,"*Ann. Fac. Sci. École Norm. Sup.*, v. 9, 1892, pp. 1-93.**[18]**D. W. Peaceman and H. H. Rachford Jr.,*The numerical solution of parabolic and elliptic differential equations*, J. Soc. Indust. Appl. Math.**3**(1955), 28–41. MR**0071874****[19]**M. J. D. Powell,*On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria*, Comput. J.**9**(1967), 404–407. MR**0208807**, https://doi.org/10.1093/comjnl/9.4.404**[20]**E. B. Saff and Richard S. Varga (eds.),*Padé and rational approximation*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Theory and applications. MR**0458010****[21]**Daniel Shanks,*Non-linear transformations of divergent and slowly convergent sequences*, J. Math. and Phys.**34**(1955), 1–42. MR**0068901**, https://doi.org/10.1002/sapm19553411**[22]***Inequalities*, Proceedings of a Symposium held at Wright-Patterson Air Force Base, Ohio, August 19-27, vol. 1965, Academic Press, New York-London, 1967. MR**0218162****[23]**Frank Stenger,*Numerical methods based on Whittaker cardinal, or sinc functions*, SIAM Rev.**23**(1981), no. 2, 165–224. MR**618638**, https://doi.org/10.1137/1023037**[24]**Frank Stenger,*Optimal convergence of minimum norm approximations in 𝐻_{𝑝}*, Numer. Math.**29**(1977/78), no. 4, 345–362. MR**0483329**, https://doi.org/10.1007/BF01432874**[25]**Frank Stenger,*Integration formulae based on the trapezoidal formula*, J. Inst. Math. Appl.**12**(1973), 103–114. MR**0381261****[26]**F. Stenger, M. R. Berggren, S. A. Johnson & C. H. Wilcox, "Rational function frequency extrapolation for diffraction correction in ultrasonic tomography," in*Wave Phenomena*:*Modern Theory and Applications*(C. Rogers and T. B. Moodie, eds.), North-Holland, Amsterdam, 1984, pp. 19-34.**[27]**T. J. Stieltjes,*Recherches sur les fractions continues*, Ann. Fac. Sci. Toulouse Math. (6)**4**(1995), no. 1, Ji–Jiv, J1–J35 (French). Reprint of the 1894 original; With an introduction by Jean Cassinet. MR**1344720**, https://doi.org/10.5802/afst.789**[28]**J. Szabados,*Uniform Approximation of Continuous Functions by Rational Functions*, Ph.D. Thesis, Hungarian Academy of Sciences, 1968. (Hungarian)**[29]**T. N. Thiele, "Differences reciproques," Overs, danske Vids, Selsk. Forhadl. (Sitzber., Akad. Kopenhagen), 1906.**[30]**Richard S. Varga,*Topics in polynomial and rational interpolation and approximation*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 81, Presses de l’Université de Montréal, Montreal, Que., 1982. MR**654329****[31]**P. Wynn,*On a device for computing the 𝑒_{𝑚}(𝑆_{𝑛}) tranformation*, Math. Tables Aids Comput.**10**(1956), 91–96. MR**0084056**, https://doi.org/10.1090/S0025-5718-1956-0084056-6**[32]**P. Wynn,*Upon some continuous prediction algorithms. I*, Calcolo**9**(1972), 197–234. MR**0362820**, https://doi.org/10.1007/BF02576490

Retrieve articles in *Mathematics of Computation*
with MSC:
41A20,
41A25,
65D15

Retrieve articles in all journals with MSC: 41A20, 41A25, 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842132-0

Article copyright:
© Copyright 1986
American Mathematical Society