Quadrature formulas for functions with poles near the interval of integration

Author:
Giovanni Monegato

Journal:
Math. Comp. **47** (1986), 301-312

MSC:
Primary 65D30; Secondary 41A55

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842137-X

MathSciNet review:
842137

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we examine the construction of quadrature rules of interpolatory type, using only real function values, for functions with complex conjugate pairs of poles near the interval of integration.

**[1]**Philip J. Davis and Philip Rabinowitz,*Methods of numerical integration*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR**0448814****[2]**David Elliott and D. F. Paget,*Product-integration rules and their convergence*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 1, 32–40. MR**0405809****[3]**David Elliott and D. F. Paget,*The convergence of product integration rules*, BIT**18**(1978), no. 2, 137–141. MR**0483319**, https://doi.org/10.1007/BF01931690**[4]**Walter Gautschi,*A survey of Gauss-Christoffel quadrature formulae*, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 72–147. MR**661060****[5]**W. Gautschi, "An algorithmic implementation of the generalized Christoffel theorem," in*Numerical Integration*(G. Hämmerlin, ed.), ISNM 57, Birkhäuser, Basel, 1982, pp. 89-106.**[6]**Walter Gautschi,*Minimal solutions of three-term recurrence relations and orthogonal polynomials*, Math. Comp.**36**(1981), no. 154, 547–554. MR**606512**, https://doi.org/10.1090/S0025-5718-1981-0606512-6**[7]**Walter Gautschi,*Discrete approximations to spherically symmetric distributions*, Numer. Math.**44**(1984), no. 1, 53–60. MR**745085**, https://doi.org/10.1007/BF01389754**[8]**Walter Gautschi and Gradimir V. Milovanović,*Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series*, Math. Comp.**44**(1985), no. 169, 177–190. MR**771039**, https://doi.org/10.1090/S0025-5718-1985-0771039-1**[9]**I. S. Gradshteyn & I. M. Ryzhik,*Tables of Integrals, Series, and Products*, Academic Press, New York, 1965.**[10]**Peter Henrici,*Applied and computational complex analysis*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros; Pure and Applied Mathematics. MR**0372162****[11]**Frank G. Lether,*Modified quadrature formulas for functions with nearby poles*, J. Comput. Appl. Math.**3**(1977), no. 1, 3–9. MR**0440876**, https://doi.org/10.1016/0771-050X(77)90017-1**[12]**G. G. Lorentz,*Approximation of functions*, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR**0213785****[13]**G. Monegato,*The numerical evaluation of one-dimensional Cauchy principal value integrals*, Computing**29**(1982), no. 4, 337–354 (English, with German summary). MR**684742**, https://doi.org/10.1007/BF02246760**[14]**Ian H. Sloan,*On the numerical evaluation of singular integrals*, BIT**18**(1978), no. 1, 91–102. MR**0501799**, https://doi.org/10.1007/BF01947747**[15]**Ian H. Sloan,*On choosing the points in product integration*, J. Math. Phys.**21**(1980), no. 5, 1032–1039. MR**574876**, https://doi.org/10.1063/1.524552**[16]**Ian H. Sloan and W. E. Smith,*Product-integration with the Clenshaw-Curtis and related points. Convergence properties*, Numer. Math.**30**(1978), no. 4, 415–428. MR**0494863**, https://doi.org/10.1007/BF01398509**[17]**Ian H. Sloan and William E. Smith,*Product integration with the Clenshaw-Curtis points: implementation and error estimates*, Numer. Math.**34**(1980), no. 4, 387–401. MR**577405**, https://doi.org/10.1007/BF01403676**[18]**Ian H. Sloan and William E. Smith,*Properties of interpolatory product integration rules*, SIAM J. Numer. Anal.**19**(1982), no. 2, 427–442. MR**650061**, https://doi.org/10.1137/0719027**[19]**William E. Smith and Ian H. Sloan,*Product-integration rules based on the zeros of Jacobi polynomials*, SIAM J. Numer. Anal.**17**(1980), no. 1, 1–13. MR**559455**, https://doi.org/10.1137/0717001**[20]**William E. Smith, Ian H. Sloan, and Alex H. Opie,*Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials*, Math. Comp.**40**(1983), no. 162, 519–535. MR**689468**, https://doi.org/10.1090/S0025-5718-1983-0689468-1**[21]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30,
41A55

Retrieve articles in all journals with MSC: 65D30, 41A55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842137-X

Article copyright:
© Copyright 1986
American Mathematical Society