Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An asymptotic expansion for the first derivative of the generalized Riemann zeta function


Author: E. Elizalde
Journal: Math. Comp. 47 (1986), 347-350
MSC: Primary 11M35; Secondary 81G05
DOI: https://doi.org/10.1090/S0025-5718-1986-0842140-X
MathSciNet review: 842140
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An asymptotic expansion for the partial derivative $ \partial \zeta (z,q)/\partial z$ of the generalized Riemann zeta function $ \zeta (z,q)$, all negative integer values of z, is obtained.


References [Enhancements On Off] (What's this?)

  • [1] C. M. Bender & S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978. MR 538168 (80d:00030)
  • [2] E. Elizalde & J. Soto, "$ \zeta $-regularized Lagrangians for massive quarks in constant background mean-fields," Ann. Physics, v. 162, 1985, pp. 192-211. MR 798705 (86m:81156)
  • [3] A. Erdélyi, Editor, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
  • [4] I. S. Gradshteyn & I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, New York, 1965.
  • [5] W. Magnus, F. Oberhettinger & R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer-Verlag, Berlin, 1966. MR 0232968 (38:1291)
  • [6] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974. MR 0435697 (55:8655)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11M35, 81G05

Retrieve articles in all journals with MSC: 11M35, 81G05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0842140-X
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society