Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **47** (1986), 369-384

Full-text PDF Free Access

References | Additional Information

**[1]**J. R. Cash,*Stable recursions*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York-Toronto, Ont., 1979. With applications to the numerical solution of stiff systems; Computational Mathematics and Applications. MR**570113****[2]**Jet Wimp,*Sequence transformations and their applications*, Mathematics in Science and Engineering, vol. 154, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**615250****[1]**John Cocke,*Lossless symbol coding with nonprimes*, IRE Trans.**IT-5**(1959), 33–34. MR**0122632****[2]**J. H. Conway,*A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups*, Proc. Nat. Acad. Sci. U.S.A.**61**(1968), 398–400. MR**0237634****[3]**M. Golay, "Notes on digital coding,"*Proc. IRE*(*IEEE*), v. 37, 1949, p. 657.**[4]**John Leech,*Some sphere packings in higher space*, Canad. J. Math.**16**(1964), 657–682. MR**0167901****[1]**W. J. Cody & W. Waite,*Software Manual for the Elementary Functions*, Prentice-Hall, Englewood Cliffs, N. J., 1980.**[2]**J. J. Dongarra, J. R. Bunch, C. B. Moler & G. W. Stewart,*LINPACK Users' Guide*, SIAM, Philadelphia, Pa., 1979.**[1]**Laurence A. Baxter,*Some remarks on numerical convolution*, Comm. Statist. B—Simulation Comput.**10**(1981), no. 3, 281–288. MR**617646****[2]**L. A. Baxter, E. M. Scheuer, D. J. McConalogue & W. R. Blischke, "On the tabulation of the renewal function,"*Technometrics*, v. 24, 1982, pp. 151-156.**[3]**Robert Cléroux and Denis J. McConalogue,*A numerical algorithm for recursively-defined convolution integrals involving distribution functions*, Management Sci.**22**(1975/76), no. 10, 1138–1146. MR**0415988****[4]**D. J. McConalogue, "Convolution integrals involving probability distribution functions (Algorithm 102),"*Comput. J.*, v. 21, 1978, pp. 270-272.**[5]**Denis J. McConalogue,*Numerical treatment of convolution integrals involving distributions with densities having singularities at the origin*, Comm. Statist. B—Simulation Comput.**10**(1981), no. 3, 265–280. MR**617645****[6]**R. M. Soland, "Availability of renewal functions for gamma and Weibull distributions with increasing hazard rate,"*Oper. Res.*, v. 17, 1969, pp. 536-543.**[7]**J. S. White, "Weibull renewal analysis," in*Proceedings of the Aerospace Reliability and Maintainability Conference, Washington, D. C., 29 June-1 July 1964*, Society of Automotive Engineers, New York, pp. 639-657.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-86-99764-4

Article copyright:
© Copyright 1986
American Mathematical Society