Convergence of the vortex filament method

Author:
Claude Greengard

Journal:
Math. Comp. **47** (1986), 387-398

MSC:
Primary 65M15; Secondary 76-08

MathSciNet review:
856692

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fully discrete convergence estimates have previously been given for the three-dimensional vortex method proposed by Beale and Majda. It is shown in this paper that vortex filament methods of the kind used in practice converge, provided smooth vortex structures consisting of closed filaments are appropriately discretized, and the stretching of the discrete filaments is computed sufficiently accurately. The error estimates obtained are those of the previous theory.

**[1]**Christopher Anderson and Claude Greengard,*On vortex methods*, SIAM J. Numer. Anal.**22**(1985), no. 3, 413–440. MR**787568**, 10.1137/0722025**[2]**J. Thomas Beale and Andrew Majda,*Vortex methods. I. Convergence in three dimensions*, Math. Comp.**39**(1982), no. 159, 1–27. MR**658212**, 10.1090/S0025-5718-1982-0658212-5**[3]**J. Thomas Beale and Andrew Majda,*Vortex methods. II. Higher order accuracy in two and three dimensions*, Math. Comp.**39**(1982), no. 159, 29–52. MR**658213**, 10.1090/S0025-5718-1982-0658213-7**[4]**J. T. Beale & A. Majda, "High order accurate vortex methods with explicit velocity kernels,"*J. Comput. Phys.*, v. 58, 1985, pp. 188-208.**[5]**Alexandre Joel Chorin,*Estimates of intermittency, spectra, and blow-up in developed turbulence*, Comm. Pure Appl. Math.**34**(1981), no. 6, 853–866. MR**634288**, 10.1002/cpa.3160340606**[6]**G. H. Cottet,*Méthodes Particulaires pour l'Equation d'Euler dans le Plan*, Thèse de 3ème cycle, Université P. et M. Curie, Paris, 1982.**[7]**G.-H. Cottet and P.-A. Raviart,*Particle methods for the one-dimensional Vlasov-Poisson equations*, SIAM J. Numer. Anal.**21**(1984), no. 1, 52–76. MR**731212**, 10.1137/0721003**[8]**C. Greengard,*Three Dimensional Vortex Methods*, Ph.D. Thesis, Univ. of California, Berkeley, 1984.**[9]**Ole H. Hald,*Convergence of vortex methods for Euler’s equations. II*, SIAM J. Numer. Anal.**16**(1979), no. 5, 726–755. MR**543965**, 10.1137/0716055**[10]**Tosio Kato,*Nonstationary flows of viscous and ideal fluids in 𝑅³*, J. Functional Analysis**9**(1972), 296–305. MR**0481652****[11]**A. Leonard, "Computing three-dimensional incompressible flows with vortex elements,"*Annual Review of Fluid Mechanics*, v. 17, 1985, pp. 523-559.**[12]**P. A. Raviart,*An Analysis of Particle Methods*, CIME Course in Numerical Methods in Fluid Dynamics, Como, July 1983.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M15,
76-08

Retrieve articles in all journals with MSC: 65M15, 76-08

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856692-7

Article copyright:
© Copyright 1986
American Mathematical Society