Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Difference schemes for degenerate parabolic equations


Author: E. A. Socolovsky
Journal: Math. Comp. 47 (1986), 411-420
MSC: Primary 65M10
DOI: https://doi.org/10.1090/S0025-5718-1986-0856694-0
MathSciNet review: 856694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Diagonal dominant implicit-difference schemes approximating a porous media type class of multidimensional nonlinear equations are shown to generate semigroups in an approximate $ {L^1}$-space, and the rate of convergence to the semigroup solution in $ {L^1}$ is given. The numerical schemes proposed by Berger et al. in [4] are described and a proof of convergence for the fully discrete algorithms is outlined. Numerical experiments are discussed.


References [Enhancements On Off] (What's this?)

  • [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. MR 0390843 (52:11666)
  • [2] G. I. Barenblatt, "On certain non-stationary motions of liquids and gases in porous media," Prikl. Mat. Mekh., v. 16, 1952, pp. 67-78.
  • [3] Ph. Benilan, Équations d'Évolution dans un Espace de Banach quelconque et Applications, Thesis, Univ. Paris XI, Orsay, 1972.
  • [4] A. E. Berger, H. Brezis & J. C. W. Rogers, "A numerical method for solving the problem $ {u_t} - \Delta f(u) = 0$," RAIRO Numer. Anal., v. 13, 1979, pp. 297-312. MR 555381 (81g:65120)
  • [5] H. Brezis, M. Crandall & A. Pazy, "Perturbations of nonlinear maximal monotone sets in Banach spaces," Comm. Pure Appl. Math., v. 23, 1970, pp. 123-144. MR 0257805 (41:2454)
  • [6] H. Brezis & A. Pazy, "Convergence and approximation of semigroups of nonlinear operators in Banach spaces," J. Funct. Anal., v. 9, 1972, pp. 63-74. MR 0293452 (45:2529)
  • [7] H. Brezis & W. A. Strauss, "Semi-linear second order elliptic equations in $ {L^1}$," J. Math. Soc. Japan, v. 25, 1973, pp. 565-590. MR 0336050 (49:826)
  • [8] M. Crandall & T. Liggett, "Generation of semi-groups of nonlinear transformations on general Banach spaces," Amer. J. Math., v. 93, 1971, pp. 265-298. MR 0287357 (44:4563)
  • [9] M. Crandall & A. Pazy, "Nonlinear evolution equations in Banach spaces," Israel J. Math., v. 11, 1972, pp. 57-94. MR 0300166 (45:9214)
  • [10] M. Crandall, "Semigroups of nonlinear transformations in Banach spaces," in Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York, 1971, pp. 157-179. MR 0470787 (57:10532)
  • [11] J. Descloux, "On the equation of Boussinesq," in Topics in Numerical Analysis (J. J. H. Miller, ed.), Vol. 3, Academic Press, London, 1977, pp. 81-102. MR 0659075 (58:31945)
  • [12] J. I. Diaz Diaz, "Solutions with compact support for some degenerate parabolic problems," Nonlinear Anal., v. 3, 1979, pp. 831-847. MR 548955 (80i:35107)
  • [13] E. Dibenedetto & D. C. Hoff, "An interface tracking algorithm for the porous medium equation," Trans. Amer. Math. Soc., v. 284, 1984, pp. 463-500. MR 743729 (85i:65119)
  • [14] L. C. Evans, Nonlinear Evolution Equations, MRC, TSR No. 1568, 1975.
  • [15] L. C. Evans, "Differentiability of a nonlinear semigroup in $ {L^1}$," J. Math. Anal. Appl., v. 60, 1977, pp. 703-715. MR 0454360 (56:12611)
  • [16] D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. MR 0473443 (57:13109)
  • [17] M. E. Gurtin & R. C. MacCamy, "On the diffusion of biological populations," Math. Biosci., v. 33, 1977, pp. 35-49. MR 0682594 (58:33147)
  • [18] M. E. Gurtin, R. C. MacCamy & E. A. Socolovsky, "A coordinate transformation for the porous media equation that renders the free-boundary stationary," Quart. Appl. Math., v. 42, 1984, pp. 345-357. MR 757173 (86d:35076)
  • [19] R. C. MacCamy & E. A. Socolovsky, "A numerical procedure for the porous media equation," Comput. Math. Appl., v. 11, 1985, pp. 315-319. MR 787446 (86k:76064)
  • [20] R. H. Martin, Jr., "A global existence theorem for autonomous differential equations in a Banach space," Proc. Amer. Math. Soc., v. 26, 1970, pp. 307-314. MR 0264195 (41:8791)
  • [21] M. Mimura, R. Nakaki & K. Tomoeda, "A numerical approach to interface curves for some nonlinear diffusion equations," Japan J. Appl. Math., v. 1, 1984, pp. 93-139. MR 839309 (87j:65111)
  • [22] I. Miyadera & S. Oharu, "Approximation of semigroups of nonlinear operators," Tôhoku Math. J., v. 22, 1970, pp. 24-47. MR 0262874 (41:7479)
  • [23] R. C. Pattle, "Diffusion from an instantaneous point source with a concentration-dependent coefficient," Quart. J. Mech. Appl. Math., v. 12, 1959, pp. 407-409. MR 0114505 (22:5326)
  • [24] M. E. Rose, "Numerical methods for flows through porous media. I," Math. Comp., v. 40, 1983, pp. 435-467. MR 689465 (85a:65146)
  • [25] E. A. Socolovsky, On Numerical Methods for Degenerate Parabolic Problems, Thesis, Carnegie-Mellon University, August, 1984.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M10

Retrieve articles in all journals with MSC: 65M10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0856694-0
Keywords: Difference schemes, degenerate nonlinear parabolic equations, nonlinear semigroups
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society