Difference schemes for degenerate parabolic equations

Author:
E. A. Socolovsky

Journal:
Math. Comp. **47** (1986), 411-420

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856694-0

MathSciNet review:
856694

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Diagonal dominant implicit-difference schemes approximating a porous media type class of multidimensional nonlinear equations are shown to generate semigroups in an approximate -space, and the rate of convergence to the semigroup solution in is given. The numerical schemes proposed by Berger et al. in [4] are described and a proof of convergence for the fully discrete algorithms is outlined. Numerical experiments are discussed.

**[1]**V. Barbu,*Nonlinear Semigroups and Differential Equations in Banach Spaces*, Noordhoff, Leyden, 1976. MR**0390843 (52:11666)****[2]**G. I. Barenblatt, "On certain non-stationary motions of liquids and gases in porous media,"*Prikl. Mat. Mekh.*, v. 16, 1952, pp. 67-78.**[3]**Ph. Benilan,*Équations d'Évolution dans un Espace de Banach quelconque et Applications*, Thesis, Univ. Paris XI, Orsay, 1972.**[4]**A. E. Berger, H. Brezis & J. C. W. Rogers, "A numerical method for solving the problem ,"*RAIRO Numer. Anal.*, v. 13, 1979, pp. 297-312. MR**555381 (81g:65120)****[5]**H. Brezis, M. Crandall & A. Pazy, "Perturbations of nonlinear maximal monotone sets in Banach spaces,"*Comm. Pure Appl. Math.*, v. 23, 1970, pp. 123-144. MR**0257805 (41:2454)****[6]**H. Brezis & A. Pazy, "Convergence and approximation of semigroups of nonlinear operators in Banach spaces,"*J. Funct. Anal.*, v. 9, 1972, pp. 63-74. MR**0293452 (45:2529)****[7]**H. Brezis & W. A. Strauss, "Semi-linear second order elliptic equations in ,"*J. Math. Soc. Japan*, v. 25, 1973, pp. 565-590. MR**0336050 (49:826)****[8]**M. Crandall & T. Liggett, "Generation of semi-groups of nonlinear transformations on general Banach spaces,"*Amer. J. Math.*, v. 93, 1971, pp. 265-298. MR**0287357 (44:4563)****[9]**M. Crandall & A. Pazy, "Nonlinear evolution equations in Banach spaces,"*Israel J. Math.*, v. 11, 1972, pp. 57-94. MR**0300166 (45:9214)****[10]**M. Crandall, "Semigroups of nonlinear transformations in Banach spaces," in*Contributions to Nonlinear Functional Analysis*(E. H. Zarantonello, ed.), Academic Press, New York, 1971, pp. 157-179. MR**0470787 (57:10532)****[11]**J. Descloux, "On the equation of Boussinesq," in*Topics in Numerical Analysis*(J. J. H. Miller, ed.), Vol. 3, Academic Press, London, 1977, pp. 81-102. MR**0659075 (58:31945)****[12]**J. I. Diaz Diaz, "Solutions with compact support for some degenerate parabolic problems,"*Nonlinear Anal.*, v. 3, 1979, pp. 831-847. MR**548955 (80i:35107)****[13]**E. Dibenedetto & D. C. Hoff, "An interface tracking algorithm for the porous medium equation,"*Trans. Amer. Math. Soc.*, v. 284, 1984, pp. 463-500. MR**743729 (85i:65119)****[14]**L. C. Evans,*Nonlinear Evolution Equations*, MRC, TSR No. 1568, 1975.**[15]**L. C. Evans, "Differentiability of a nonlinear semigroup in ,"*J. Math. Anal. Appl.*, v. 60, 1977, pp. 703-715. MR**0454360 (56:12611)****[16]**D. Gilbarg & N. S. Trudinger,*Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, New York, 1977. MR**0473443 (57:13109)****[17]**M. E. Gurtin & R. C. MacCamy, "On the diffusion of biological populations,"*Math. Biosci.*, v. 33, 1977, pp. 35-49. MR**0682594 (58:33147)****[18]**M. E. Gurtin, R. C. MacCamy & E. A. Socolovsky, "A coordinate transformation for the porous media equation that renders the free-boundary stationary,"*Quart. Appl. Math.*, v. 42, 1984, pp. 345-357. MR**757173 (86d:35076)****[19]**R. C. MacCamy & E. A. Socolovsky, "A numerical procedure for the porous media equation,"*Comput. Math. Appl.*, v. 11, 1985, pp. 315-319. MR**787446 (86k:76064)****[20]**R. H. Martin, Jr., "A global existence theorem for autonomous differential equations in a Banach space,"*Proc. Amer. Math. Soc.*, v. 26, 1970, pp. 307-314. MR**0264195 (41:8791)****[21]**M. Mimura, R. Nakaki & K. Tomoeda, "A numerical approach to interface curves for some nonlinear diffusion equations,"*Japan J. Appl. Math.*, v. 1, 1984, pp. 93-139. MR**839309 (87j:65111)****[22]**I. Miyadera & S. Oharu, "Approximation of semigroups of nonlinear operators,"*Tôhoku Math. J.*, v. 22, 1970, pp. 24-47. MR**0262874 (41:7479)****[23]**R. C. Pattle, "Diffusion from an instantaneous point source with a concentration-dependent coefficient,"*Quart. J. Mech. Appl. Math.*, v. 12, 1959, pp. 407-409. MR**0114505 (22:5326)****[24]**M. E. Rose, "Numerical methods for flows through porous media. I,"*Math. Comp.*, v. 40, 1983, pp. 435-467. MR**689465 (85a:65146)****[25]**E. A. Socolovsky,*On Numerical Methods for Degenerate Parabolic Problems*, Thesis, Carnegie-Mellon University, August, 1984.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856694-0

Keywords:
Difference schemes,
degenerate nonlinear parabolic equations,
nonlinear semigroups

Article copyright:
© Copyright 1986
American Mathematical Society