Difference schemes for degenerate parabolic equations

Author:
E. A. Socolovsky

Journal:
Math. Comp. **47** (1986), 411-420

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856694-0

MathSciNet review:
856694

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Diagonal dominant implicit-difference schemes approximating a porous media type class of multidimensional nonlinear equations are shown to generate semigroups in an approximate -space, and the rate of convergence to the semigroup solution in is given. The numerical schemes proposed by Berger et al. in [4] are described and a proof of convergence for the fully discrete algorithms is outlined. Numerical experiments are discussed.

**[1]**Viorel Barbu,*Nonlinear semigroups and differential equations in Banach spaces*, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR**0390843****[2]**G. I. Barenblatt, "On certain non-stationary motions of liquids and gases in porous media,"*Prikl. Mat. Mekh.*, v. 16, 1952, pp. 67-78.**[3]**Ph. Benilan,*Équations d'Évolution dans un Espace de Banach quelconque et Applications*, Thesis, Univ. Paris XI, Orsay, 1972.**[4]**Alan E. Berger, Haïm Brézis, and Joel C. W. Rogers,*A numerical method for solving the problem 𝑢_{𝑡}-Δ𝑓(𝑢)=0*, RAIRO Anal. Numér.**13**(1979), no. 4, 297–312 (English, with French summary). MR**555381**, https://doi.org/10.1051/m2an/1979130402971**[5]**H. Brezis, M. G. Crandall, and A. Pazy,*Perturbations of nonlinear maximal monotone sets in Banach space*, Comm. Pure Appl. Math.**23**(1970), 123–144. MR**0257805**, https://doi.org/10.1002/cpa.3160230107**[6]**H. Brézis and A. Pazy,*Convergence and approximation of semigroups of nonlinear operators in Banach spaces*, J. Functional Analysis**9**(1972), 63–74. MR**0293452****[7]**Haïm Brézis and Walter A. Strauss,*Semi-linear second-order elliptic equations in 𝐿¹*, J. Math. Soc. Japan**25**(1973), 565–590. MR**0336050**, https://doi.org/10.2969/jmsj/02540565**[8]**M. G. Crandall and T. M. Liggett,*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**0287357**, https://doi.org/10.2307/2373376**[9]**M. G. Crandall and A. Pazy,*Nonlinear evolution equations in Banach spaces*, Israel J. Math.**11**(1972), 57–94. MR**0300166**, https://doi.org/10.1007/BF02761448**[10]**Michael G. Crandall,*Semigroups of nonlinear transformations in Banach spaces*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 157–179. Publ. Math. Res. Center Univ. Wisconsin, No. 27. MR**0470787****[11]**J. Descloux,*On the equation of Boussinesq*, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 81–102. MR**0659075****[12]**J. Ildefonso Díaz Díaz,*Solutions with compact support for some degenerate parabolic problems*, Nonlinear Anal.**3**(1979), no. 6, 831–847. MR**548955**, https://doi.org/10.1016/0362-546X(79)90051-8**[13]**E. DiBenedetto and David Hoff,*An interface tracking algorithm for the porous medium equation*, Trans. Amer. Math. Soc.**284**(1984), no. 2, 463–500. MR**743729**, https://doi.org/10.1090/S0002-9947-1984-0743729-3**[14]**L. C. Evans,*Nonlinear Evolution Equations*, MRC, TSR No. 1568, 1975.**[15]**Lawrence C. Evans,*Differentiability of a nonlinear semigroup in 𝐿¹*, J. Math. Anal. Appl.**60**(1977), no. 3, 703–715. MR**0454360**, https://doi.org/10.1016/0022-247X(77)90009-9**[16]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR**0473443****[17]**Morton E. Gurtin and Richard C. MacCamy,*On the diffusion of biological populations*, Math. Biosci.**33**(1977), no. 1-2, 35–49. MR**0682594**, https://doi.org/10.1016/0025-5564(77)90062-1**[18]**Morton E. Gurtin, Richard C. MacCamy, and Eduardo A. Socolovsky,*A coordinate transformation for the porous media equation that renders the free boundary stationary*, Quart. Appl. Math.**42**(1984), no. 3, 345–357. MR**757173**, https://doi.org/10.1090/S0033-569X-1984-0757173-5**[19]**R. C. MacCamy and Eduardo Socolovsky,*A numerical procedure for the porous media equation*, Comput. Math. Appl.**11**(1985), no. 1-3, 315–319. Hyperbolic partial differential equations, II. MR**787446**, https://doi.org/10.1016/0898-1221(85)90156-7**[20]**R. H. Martin Jr.,*A global existence theorem for autonomous differential equations in a Banach space*, Proc. Amer. Math. Soc.**26**(1970), 307–314. MR**0264195**, https://doi.org/10.1090/S0002-9939-1970-0264195-6**[21]**Masayasu Mimura, Tatsuyuki Nakaki, and Kenji Tomoeda,*A numerical approach to interface curves for some nonlinear diffusion equations*, Japan J. Appl. Math.**1**(1984), no. 1, 93–139. MR**839309**, https://doi.org/10.1007/BF03167863**[22]**Isao Miyadera and Shinnosuke Ôharu,*Approximation of semi-groups of nonlinear operators*, Tôhoku Math. J. (2)**22**(1970), 24–47. MR**0262874**, https://doi.org/10.2748/tmj/1178242858**[23]**R. E. Pattle,*Diffusion from an instantaneous point source with a concentration-dependent coefficient*, Quart. J. Mech. Appl. Math.**12**(1959), 407–409. MR**0114505**, https://doi.org/10.1093/qjmam/12.4.407**[24]**Michael E. Rose,*Numerical methods for flows through porous media. I*, Math. Comp.**40**(1983), no. 162, 435–467. MR**689465**, https://doi.org/10.1090/S0025-5718-1983-0689465-6**[25]**E. A. Socolovsky,*On Numerical Methods for Degenerate Parabolic Problems*, Thesis, Carnegie-Mellon University, August, 1984.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856694-0

Keywords:
Difference schemes,
degenerate nonlinear parabolic equations,
nonlinear semigroups

Article copyright:
© Copyright 1986
American Mathematical Society