Construction of variable-stepsize multistep formulas

Author:
Robert D. Skeel

Journal:
Math. Comp. **47** (1986), 503-510, S45

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856699-X

MathSciNet review:
856699

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A systematic way of extending a general fixed-stepsize multistep formula to a minimum storage variable-stepsize formula has been discovered that encompasses fixed-coefficient (interpolatory), variable-coefficient (variable step), and fixed leading coefficient as special cases. In particular, it is shown that the "interpolatory" stepsize changing technique of Nordsieck leads to a truly variable-stepsize multistep formula (which has implications for local error estimation and formula changing), and it is shown that the "variable-step" stepsize changing technique applicable to the Adams and backward-differentiation formulas has a reasonable generalization to the general multistep formula. In fact, it is shown how to construct a variable-order family of variable-coefficient formulas. Finally, it is observed that the first Dahlquist barrier does not apply to adaptable multistep methods if storage rather than stepnumber is the key consideration.

**[1]**G. D. Byrne & A. C. Hindmarsh, "A polyalgorithm for the numerical solution of ordinary differential equations,"*ACM Trans. Math. Software*, v. 1, 1975, pp. 71-96. MR**0378432 (51:14600)****[2]**G. G. Dahlquist, "Numerical integration of ordinary differential equations,"*Math. Scand.*, v. 4, 1956, pp. 33-50. MR**0080998 (18:338d)****[3]**G. G. Dahlquist,*On Stability and Error Analysis for Stiff Non-linear Problems, Part*1, Report TRITA-NA-7508, Dept. of Computer Sci., Royal Inst. of Technology, Stockholm, 1975.**[4]**G. G. Dahlquist & A. Björck,*Numerical Methods*(transl. by N. Anderson), Prentice-Hall, Englewood Cliffs, N. J., 1975. MR**0368379 (51:4620)****[5]**G. G. Dahlquist, W. Liniger & O. Nevanlinna, "Stability of two-step methods for variable integration steps,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 1071-1085. MR**714701 (85b:65079)****[6]**J. Descloux,*A Note on a Paper by A. Nordsieck*, Report #131, Dept. of Computer Sci., Univ. of Illinois, Urbana-Champaign, 1963.**[7]**C. Dill & C. W. Gear, "A graphical search for stiffly stable methods for ordinary differential equations,"*J. Assoc. Comput. Mach.*, v. 18, 1971, pp. 75-79.**[8]**C. W. Gear,*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR**0315898 (47:4447)****[9]**C. W. Gear & D. S. Watanabe, "Stability and convergence of variable order multistep methods,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 1044-1058. MR**0368437 (51:4678)****[10]**A. Hindmarsh,*Documentation for LSODE*, Math. & Stats. Section L-300, Lawrence Livermore Laboratory, Livermore, Calif., 1980.**[11]**K. R. Jackson & R. Sacks-Davis, "An alternative implementation of variable step-size multistep formulas for stiff ODEs,"*ACM Trans. Math. Software*, v. 6, 1980, pp. 295-318. MR**585340 (81m:65120)****[12]**M. D. Kregel & J. M. Heimerl,*Comments on the Solution of Coupled Stiff Differential Equations*, Proc. of the 1977 Army Numerical Analysis and Computers Conference, Report No. 77-3, U. S. Army Research Office, Research Triangle Park, N. C., 1977, pp. 553-563.**[13]**F. T. Krogh, "Algorithms for changing the step size,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 949-965. MR**0356515 (50:8985)****[14]**A. Nordsieck, "On numerical integration of ordinary differential equations,"*Math. Comp.*, v. 16, 1962, pp. 22-49. MR**0136519 (24:B2552)****[15]**J. Sand,*Stability and Boundedness Results for Variable-Step Variable-Formula Methods*, Report TRITA-NA-8219, Dept. of Numer. Anal. and Computer Sci., Royal Inst. of Technology, Stockholm, 1982.**[16]**L. F. Shampine,*How to Live with a Reasonable ODE Code*(*DIFSUB*)*until a Good One Arrives*, manuscript, ca. 1974.**[17]**L. F. Shampine & M. K. Gordon,*Computer Solution of Ordinary Differential Equations*, Freeman, San Francisco, 1975. MR**0478627 (57:18104)****[18]**R. D. Skeel,*Convergence of Multivalue Methods for Solving Ordinary Differential Equations*, Report TR73-16, Dept. of Computing Sci., Univ. of Alberta, Edmonton, 1973.**[19]**R. D. Skeel, "Equivalent forms of multistep formulas,"*Math. Comp.*, v. 33, 1979, pp. 1229-1250; Corrigendum,*ibid.*, v. 47, 1986, p. 769. MR**537967 (80j:65027)****[20]**R. D. Skeel & T. V. Vu, "Note on blended linear multistep methods." (submitted.)**[21]**C. S. Wallace & G. K. Gupta, "General linear multistep methods to solve ordinary differential equations,"*Austral. Comput. J.*, v. 5, 1973, pp. 62-69. MR**0362919 (50:15357)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856699-X

Keywords:
Multistep formula,
multistep method,
multivalue method,
variable stepsize,
variable order

Article copyright:
© Copyright 1986
American Mathematical Society