A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots

Author:
C. T. Kelley

Journal:
Math. Comp. **47** (1986), 609-623

MSC:
Primary 65J15; Secondary 49D15

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856706-4

MathSciNet review:
856706

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A variation of the Shamanskii method is used to obtain a superlinearly convergent method for a class of nonlinear equations having singular Fréchet derivative at the root. The cost of a superlinear step is one derivative evaluation and two function evaluations.

**[1]**R. P. Brent, "Some efficient algorithms for solving systems of nonlinear equations,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 327-344. MR**0331764 (48:10096)****[2]**R. C. Cavanaugh,*Difference Equations and Iterative Processes*, Thesis, Computer Science Dept., Univ. of Maryland, College Park, 1970.**[3]**S. Chandrasekhar,*Radiative Transfer*, Dover, New York, 1960. MR**0111583 (22:2446)****[4]**D. W. Decker & C. T. Kelley, "Newton's method at singular points I,"*SIAM J. Numer. Anal.*, v. 17, 1980, pp. 66-70. MR**559463 (81k:65065a)****[5]**D. W. Decker & C. T. Kelley, "Newton's method at singular points II,"*SIAM J. Numer. Anal.*, v. 17, 1980, pp. 465-471. MR**581492 (81k:65065b)****[6]**D. W. Decker & C. T. Kelley, "Convergence acceleration for Newton's method at singular points,"*SIAM J. Numer. Anal.*, v. 19, 1982, pp. 219-229. MR**646604 (83e:65090)****[7]**D. W. Decker, H. B. Keller & C. T. Kelley, "Convergence rates for Newton's method at singular points,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 296-314. MR**694520 (84d:65041)****[8]**D. W. Decker & C. T. Kelley, "Sublinear convergence of the chord method at singular points,"*Numer. Math.*, v. 42, 1983, pp. 147-154. MR**720655 (84k:65054)****[9]**D. W. Decker & C. T. Kelley, "Expanded convergence domains for Newton's method at nearly singular roots,"*SIAM J. Sci. Statist. Comput.*, v. 6, 1985, pp. 951-966. MR**801183 (86j:65068)****[10]**J. E. Dennis & R. B. Schnabel,*Numerical Methods for Nonlinear Equations and Unconstrained Optimization*, Prentice-Hall, Englewood Cliffs, N.J., 1983.**[11]**G. H. Golub & C. F. Van Loan,*Matrix Computations*, Johns Hopkins Univ. Press, Baltimore, 1983. MR**733103 (85h:65063)****[12]**A. Griewank,*Analysis and Modification of Newton's Method at Singularities*, Thesis, Australian National University, Canberra, 1980.**[13]**A. Griewank, "Starlike domains of convergence for Newton's method at singularities,"*Numer. Math.*, v. 35, 1980, pp. 95-111. MR**583659 (81j:65070)****[14]**A. Griewank & M. R. Osborne, "Newton's method for singular problems when the dimension of the null space is ,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 179-189. MR**603436 (82c:65032)****[15]**A. Griewank & M. R. Osborne, "Analysis of Newton's method at irregular singular points,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 747-773. MR**708455 (85a:65073)****[16]**A. Griewank, "On solving nonlinear equations with simple singularities or nearly singular solutions,"*SIAM Rev.*, v. 27, 1985, pp. 537-564. MR**812453 (87g:65071)****[17]**L. V. Kantorovich & G. P. Akilov,*Functional Analysis in Normed Spaces*, Pergamon Press, New York, 1964. MR**0213845 (35:4699)****[18]**H. B. Keller, "Geometrically isolated nonisolated solutions and their approximation,"*SIAM J. Numer. Anal.*, v. 18, 1981, pp. 822-838. MR**629667 (82j:58013)****[19]**C. T. Kelley, "Solution of the Chandrasekhar*H*-equation by Newton's method,"*J. Math. Phys.*, v. 21, 1980, pp. 1625-1628. MR**575595 (81j:85003)****[20]**C. T. Kelley, "Approximate methods for the solution of the Chandrasekhar*H*-equation,"*J. Math. Phys.*, v. 23, 1982, pp. 2097-2100. MR**680006 (84b:65051)****[21]**C. T. Kelley & R. Suresh, "A new acceleration method for Newton's method at singular points,"*SIAM J. Numer. Anal.*, v. 20, 1983, pp. 1001-1009. MR**714695 (85c:65063)****[22]**T. W. Mullikin, "Some probability distributions for neutron transport in a half space,"*J. Appl. Probab.*, v. 5, 1968, pp. 357-374. MR**0235626 (38:3929)****[23]**J. M. Ortega & W. C. Rheinboldt,*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970. MR**0273810 (42:8686)****[24]**L. B. Rall, "Convergence of the Newton process to multiple solutions,"*Numer. Math.*, v. 9, 1961, pp. 23-37. MR**0210316 (35:1209)****[25]**L. B. Rall,*Rates of Convergence of Newton's method*, MRC Technical Summary Report no. 1224, Mathematics Research Center, Madison, Wisc., 1972.**[26]**G. W. Reddien, "On Newton's method for singular problems,"*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 993-996. MR**507559 (80b:65064)****[27]**G. W. Reddien, "Newton's method and high order singularities,"*Comput. Math. Appl.*, v. 5, 1980, pp. 79-86. MR**539566 (81c:65026)****[28]**V. E. Shamanskii, "A modification of Newton's method,"*Ukrain. Mat. Zh.*, v. 19, 1967, pp. 133-138. MR**0205451 (34:5279)****[29]**R. B. Schnabel,*Conic Methods for Unconstrained Minimization Problems and Tensor Methods for Nonlinear Equations*, University of Colorado Technical Report, Dept. of Computer Science, University of Colorado, Boulder, Colorado, 1982.**[30]**R. B. Schnabel & P. D. Frank,*Tensor Methods for Nonlinear Equations*, University of Colorado Report, Dept. of Computer Science, University of Colorado, Boulder, Colorado, 1983. MR**760620 (86d:65066)****[31]**E. Schröder, "Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen,"*Math. Ann.*, v. 2, 1870, pp. 317-365. MR**1509664****[32]**J. F. Traub,*Iterative Methods for the Solution of Equations*, Prentice-Hall, Englewood Cliffs, N.J., 1964. MR**0169356 (29:6607)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65J15,
49D15

Retrieve articles in all journals with MSC: 65J15, 49D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856706-4

Article copyright:
© Copyright 1986
American Mathematical Society