A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots

Author:
C. T. Kelley

Journal:
Math. Comp. **47** (1986), 609-623

MSC:
Primary 65J15; Secondary 49D15

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856706-4

MathSciNet review:
856706

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A variation of the Shamanskii method is used to obtain a superlinearly convergent method for a class of nonlinear equations having singular Fréchet derivative at the root. The cost of a superlinear step is one derivative evaluation and two function evaluations.

**[1]**Richard P. Brent,*Some efficient algorithms for solving systems of nonlinear equations*, SIAM J. Numer. Anal.**10**(1973), 327–344. Collection of articles dedicated to the memory of George E. Forsythe. MR**0331764**, https://doi.org/10.1137/0710031**[2]**R. C. Cavanaugh,*Difference Equations and Iterative Processes*, Thesis, Computer Science Dept., Univ. of Maryland, College Park, 1970.**[3]**S. Chandrasekhar,*Radiative transfer*, Dover Publications, Inc., New York, 1960. MR**0111583****[4]**D. W. Decker and C. T. Kelley,*Newton’s method at singular points. I*, SIAM J. Numer. Anal.**17**(1980), no. 1, 66–70. MR**559463**, https://doi.org/10.1137/0717009**[5]**D. W. Decker and C. T. Kelley,*Newton’s method at singular points. II*, SIAM J. Numer. Anal.**17**(1980), no. 3, 465–471. MR**581492**, https://doi.org/10.1137/0717039**[6]**D. W. Decker and C. T. Kelley,*Convergence acceleration for Newton’s method at singular points*, SIAM J. Numer. Anal.**19**(1982), no. 1, 219–229. MR**646604**, https://doi.org/10.1137/0719012**[7]**D. W. Decker, H. B. Keller, and C. T. Kelley,*Convergence rates for Newton’s method at singular points*, SIAM J. Numer. Anal.**20**(1983), no. 2, 296–314. MR**694520**, https://doi.org/10.1137/0720020**[8]**D. W. Decker and C. T. Kelley,*Sublinear convergence of the chord method at singular points*, Numer. Math.**42**(1983), no. 2, 147–154. MR**720655**, https://doi.org/10.1007/BF01395307**[9]**D. W. Decker and C. T. Kelley,*Expanded convergence domains for Newton’s method at nearly singular roots*, SIAM J. Sci. Statist. Comput.**6**(1985), no. 4, 951–966. MR**801183**, https://doi.org/10.1137/0906064**[10]**J. E. Dennis & R. B. Schnabel,*Numerical Methods for Nonlinear Equations and Unconstrained Optimization*, Prentice-Hall, Englewood Cliffs, N.J., 1983.**[11]**Gene H. Golub and Charles F. Van Loan,*Matrix computations*, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR**733103****[12]**A. Griewank,*Analysis and Modification of Newton's Method at Singularities*, Thesis, Australian National University, Canberra, 1980.**[13]**A. O. Griewank,*Starlike domains of convergence for Newton’s method at singularities*, Numer. Math.**35**(1980), no. 1, 95–111. MR**583659**, https://doi.org/10.1007/BF01396373**[14]**Andreas Griewank and M. R. Osborne,*Newton’s method for singular problems when the dimension of the null space is >1*, SIAM J. Numer. Anal.**18**(1981), no. 1, 145–149. MR**603436**, https://doi.org/10.1137/0718011**[15]**A. Griewank and M. R. Osborne,*Analysis of Newton’s method at irregular singularities*, SIAM J. Numer. Anal.**20**(1983), no. 4, 747–773. MR**708455**, https://doi.org/10.1137/0720050**[16]**A. Griewank,*On solving nonlinear equations with simple singularities or nearly singular solutions*, SIAM Rev.**27**(1985), no. 4, 537–563. MR**812453**, https://doi.org/10.1137/1027141**[17]**L. V. Kantorovich and G. P. Akilov,*Functional analysis in normed spaces*, Translated from the Russian by D. E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Co., New York, 1964. MR**0213845****[18]**Herbert B. Keller,*Geometrically isolated nonisolated solutions and their approximation*, SIAM J. Numer. Anal.**18**(1981), no. 5, 822–838. MR**629667**, https://doi.org/10.1137/0718056**[19]**C. T. Kelley,*Solution of the Chandrasekhar 𝐻-equation by Newton’s method*, J. Math. Phys.**21**(1980), no. 7, 1625–1628. MR**575595**, https://doi.org/10.1063/1.524647**[20]**C. T. Kelley,*Approximate methods for the solution of the Chandrasekhar 𝐻-equation*, J. Math. Phys.**23**(1982), no. 11, 2097–2100. MR**680006**, https://doi.org/10.1063/1.525251**[21]**C. T. Kelley and R. Suresh,*A new acceleration method for Newton’s method at singular points*, SIAM J. Numer. Anal.**20**(1983), no. 5, 1001–1009. MR**714695**, https://doi.org/10.1137/0720070**[22]**T. W. Mullikin,*Some probability distributions for neutron transport in a half-space.*, J. Appl. Probability**5**(1968), 357–374. MR**0235626****[23]**J. M. Ortega and W. C. Rheinboldt,*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810****[24]**L. B. Rall,*Convergence of the Newton process to multiple solutions*, Numer. Math.**9**(1966), 23–37. MR**0210316**, https://doi.org/10.1007/BF02165226**[25]**L. B. Rall,*Rates of Convergence of Newton's method*, MRC Technical Summary Report no. 1224, Mathematics Research Center, Madison, Wisc., 1972.**[26]**G. W. Reddien,*On Newton’s method for singular problems*, SIAM J. Numer. Anal.**15**(1978), no. 5, 993–996. MR**507559**, https://doi.org/10.1137/0715064**[27]**G. W. Reddien,*Newton’s method and high order singularities*, Comput. Math. Appl.**5**(1979), no. 2, 79–86. MR**539566**, https://doi.org/10.1016/0898-1221(79)90061-0**[28]**V. E. Šamanskiĭ,*On a modification of the Newton method*, Ukrain. Mat. Ž.**19**(1967), no. 1, 133–138 (Russian). MR**0205451****[29]**R. B. Schnabel,*Conic Methods for Unconstrained Minimization Problems and Tensor Methods for Nonlinear Equations*, University of Colorado Technical Report, Dept. of Computer Science, University of Colorado, Boulder, Colorado, 1982.**[30]**Robert B. Schnabel and Paul D. Frank,*Tensor methods for nonlinear equations*, SIAM J. Numer. Anal.**21**(1984), no. 5, 815–843. MR**760620**, https://doi.org/10.1137/0721054**[31]**E. Schröder,*Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen*, Math. Ann.**2**(1870), no. 2, 317–365 (German). MR**1509664**, https://doi.org/10.1007/BF01444024**[32]**J. F. Traub,*Iterative methods for the solution of equations*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0169356**

Retrieve articles in *Mathematics of Computation*
with MSC:
65J15,
49D15

Retrieve articles in all journals with MSC: 65J15, 49D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856706-4

Article copyright:
© Copyright 1986
American Mathematical Society