Properties of the polynomials associated with the Jacobi polynomials

Author:
S. Lewanowicz

Journal:
Math. Comp. **47** (1986), 669-682

MSC:
Primary 33A65; Secondary 33A45

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856711-8

MathSciNet review:
856711

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Power forms and Jacobi polynomial forms are found for the polynomials associated with Jacobi polynomials. Also, some differential-difference equations and evaluations of certain integrals involving are given.

**[1]**R. Askey & G. Gasper, "Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients,"*Proc. Cambridge Philos. Soc.*, v. 70, 1971, pp. 243-255. MR**0296369 (45:5430)****[2]**R. Askey & J. Wimp, "Associated Laguerre and Hermite polynomials,"*Proc. Roy. Soc. Edinburgh Sect. A*, v. 96, 1984, pp. 15-37. MR**741641 (85f:33014)****[3]**P. Barrucand & D. Dickinson, "On the associated Legendre polynomials," in*Orthogonal Expansions and Their Continuous Analogues*(D. T. Haimo, ed.), Southern Illinois Univ. Press, Carbondale, Ill., 1967, pp. 43-50. MR**0232975 (38:1298)****[4]**J. Bustoz & M. E. H. Ismail, "The associated ultraspherical polynomials and their*q*-analogues,"*Canad. J. Math.*, v. 34, 1982, pp. 718-736. MR**663314 (84c:33013)****[5]**A. Erdélyi et al.,*Higher Transcendental Functions*, Vols. 1 and 2, McGraw-Hill, New York, 1953.**[6]**W. Gautschi, "Minimal solutions of three-term recurrence relations and orthogonal polynomials,"*Math. Comp.*, v. 36, 1981, pp. 547-554. MR**606512 (82m:33006)****[7]**C. C. Grosjean, "The orthogonality property of the Lommel polynomials and a twofold infinity of relations between Rayleigh's -sums,"*J. Comput. Appl. Math.*, v. 10, 1984, pp. 355-382. MR**755809 (85m:33011)****[8]**C. C. Grosjean, "Theory of recursive generation of systems of orthogonal polynomials: An illustrative example,"*J. Comput. Appl. Math.*, v. 12/13, 1985, pp. 299-318. MR**793963 (86g:33015)****[9]**C. C. Grosjean, private communication, 1985.**[10]**S. L. Kalla, S. Conde & Y. L. Luke, "Integrals of Jacobi functions,"*Math. Comp.*, v. 39, 1982, pp. 207-214. MR**637298 (83a:33005)****[11]**S. Lewanowicz, "Recurrence relations for hypergeometric functions of unit argument,"*Math. Comp.*, v. 45, 1985, pp. 521-535. MR**804941 (86m:33004)****[12]**S. Lewanowicz, "Recurrence relations for the coefficients in Jacobi series solutions of linear differential equations,"*SIAM J. Math. Anal.*, v. 17, 1986. (To appear.) MR**853515 (87k:33011)****[13]**Y. L. Luke,*Mathematical Functions and Their Approximations*, Academic Press, New York, 1975. MR**0501762 (58:19039)****[14]**P. Nevai, "A new class of orthogonal polynomials,"*Proc. Amer. Math. Soc.*, v. 91, 1984, pp. 409-415. MR**744640 (85f:42036)****[15]**S. Paszkowski,*Polynômes Associés aux Polynômes Orthogonaux Classiques*, Publication ANO-136, Univ. Sci. Tech. de Lille, U.E.R. d'I.E.E.A., 1984.**[16]**E. D. Rainville,*Special Functions*, Macmillan, New York, 1960. MR**0107725 (21:6447)****[17]**L. J. Slater,*Generalized Hypergeometric Functions*, Cambridge Univ. Press, Cambridge, 1966. MR**0201688 (34:1570)****[18]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939.**[19]**J. Wimp,*Computation with Recurrence Relations*, Pitman, Boston, 1984. MR**727118 (85f:65001)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A65,
33A45

Retrieve articles in all journals with MSC: 33A65, 33A45

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856711-8

Article copyright:
© Copyright 1986
American Mathematical Society