Properties of the polynomials associated with the Jacobi polynomials

Author:
S. Lewanowicz

Journal:
Math. Comp. **47** (1986), 669-682

MSC:
Primary 33A65; Secondary 33A45

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856711-8

MathSciNet review:
856711

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Power forms and Jacobi polynomial forms are found for the polynomials associated with Jacobi polynomials. Also, some differential-difference equations and evaluations of certain integrals involving are given.

**[1]**Richard Askey and George Gasper,*Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients*, Proc. Cambridge Philos. Soc.**70**(1971), 243–255. MR**0296369****[2]**Richard Askey and Jet Wimp,*Associated Laguerre and Hermite polynomials*, Proc. Roy. Soc. Edinburgh Sect. A**96**(1984), no. 1-2, 15–37. MR**741641**, https://doi.org/10.1017/S0308210500020412**[3]**Pierre Barrucand and David Dickinson,*On the associated Legendre polynomials*, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 43–50. MR**0232975****[4]**Joaquin Bustoz and Mourad E. H. Ismail,*The associated ultraspherical polynomials and their 𝑞-analogues*, Canad. J. Math.**34**(1982), no. 3, 718–736. MR**663314**, https://doi.org/10.4153/CJM-1982-049-6**[5]**A. Erdélyi et al.,*Higher Transcendental Functions*, Vols. 1 and 2, McGraw-Hill, New York, 1953.**[6]**Walter Gautschi,*Minimal solutions of three-term recurrence relations and orthogonal polynomials*, Math. Comp.**36**(1981), no. 154, 547–554. MR**606512**, https://doi.org/10.1090/S0025-5718-1981-0606512-6**[7]**C. C. Grosjean,*The orthogonality property of the Lommel polynomials and a twofold infinity of relations between Rayleigh’s 𝜎-sums*, J. Comput. Appl. Math.**10**(1984), no. 3, 355–382. MR**755809**, https://doi.org/10.1016/0377-0427(84)90044-X**[8]**C. C. Grosjean,*Theory of recursive generation of systems of orthogonal polynomials: an illustrative example*, Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), 1985, pp. 299–318. MR**793963**, https://doi.org/10.1016/0377-0427(85)90026-3**[9]**C. C. Grosjean, private communication, 1985.**[10]**Shyam L. Kalla, Salvador Conde, and Yudell L. Luke,*Integrals of Jacobi functions*, Math. Comp.**38**(1982), no. 157, 207–214. MR**637298**, https://doi.org/10.1090/S0025-5718-1982-0637298-8**[11]**Stanisław Lewanowicz,*Recurrence relations for hypergeometric functions of unit argument*, Math. Comp.**45**(1985), no. 172, 521–535. MR**804941**, https://doi.org/10.1090/S0025-5718-1985-0804941-2**[12]**Stanisław Lewanowicz,*Recurrence relations for the coefficients in Jacobi series solutions of linear differential equations*, SIAM J. Math. Anal.**17**(1986), no. 5, 1037–1052. MR**853515**, https://doi.org/10.1137/0517074**[13]**Yudell L. Luke,*Mathematical functions and their approximations*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0501762****[14]**Paul Nevai,*A new class of orthogonal polynomials*, Proc. Amer. Math. Soc.**91**(1984), no. 3, 409–415. MR**744640**, https://doi.org/10.1090/S0002-9939-1984-0744640-X**[15]**S. Paszkowski,*Polynômes Associés aux Polynômes Orthogonaux Classiques*, Publication ANO-136, Univ. Sci. Tech. de Lille, U.E.R. d'I.E.E.A., 1984.**[16]**Earl D. Rainville,*Special functions*, The Macmillan Co., New York, 1960. MR**0107725****[17]**Lucy Joan Slater,*Generalized hypergeometric functions*, Cambridge University Press, Cambridge, 1966. MR**0201688****[18]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939.**[19]**Jet Wimp,*Computation with recurrence relations*, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**727118**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A65,
33A45

Retrieve articles in all journals with MSC: 33A65, 33A45

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856711-8

Article copyright:
© Copyright 1986
American Mathematical Society