Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The primality of $ R1031$


Authors: H. C. Williams and Harvey Dubner
Journal: Math. Comp. 47 (1986), 703-711
MSC: Primary 11Y11; Secondary 11A51
DOI: https://doi.org/10.1090/S0025-5718-1986-0856714-3
MathSciNet review: 856714
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A description is given of a technique for proving $ R1031\;( = ({10^{1031}} - 1)/9)$ a prime.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Adelman, C. Pomerance & R. S. Rumely, "On distinguishing prime numbers from composite numbers," Ann. of Math. (2), v. 117, 1983, pp. 173-206. MR 683806 (84e:10008)
  • [2] R. P. Brent & J. H. Pollard, "Factorization of the eighth Fermat number," Math. Comp., v. 36, 1981, pp. 627-630. MR 606520 (83h:10014)
  • [3] J. Brillhart, D. H. Lehmer & J. L. Selfridge, "New primality criteria and factorizations of $ {2^n} \pm 1$," Math. Comp., v. 29, 1975, pp. 620-647. MR 0384673 (52:5546)
  • [4] J. Brillhart, D. H. Lehmer, John Selfridge, B. Tuckerman & S. S. Wagstaff, Jr., Factorizations of $ {b^n} + 1$, $ b = 2,3,5,6,7,10,11,12$ Up to High Powers, Contemp. Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1983. MR 715603 (84k:10005)
  • [5] H. Cohen & W. H. Lenstra, Jr., "Primality testing and Jacobi sums," Math. Comp., v. 42, 1984, pp. 297-330. MR 726006 (86g:11078)
  • [6] H. Cohen & A. K. Lenstra, "Implementation of a new primality test," Math. Comp. (To appear.) MR 866102 (88c:11080)
  • [7] H. Dubner & R. Dubner, "The development of a powerful, low-cost computer for number theory application," J. Recreational Math. (To appear.)
  • [8] H. W. Lenstra, Jr., "Divisors in residue classes," Math. Comp., v. 42, 1984, pp. 331-340. MR 726007 (85b:11118)
  • [9] J. M. Pollard, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc., v. 76, 1974, pp. 521-528. MR 0354514 (50:6992)
  • [10] J. M. Pollard, "A Monte Carlo method for factorization," BIT, v. 15, 1975, pp. 331-334. MR 0392798 (52:13611)
  • [11] H. C. Williams, "A generalization of Lehmer's functions," Acta Arith., v. 29, 1976, pp. 315-341. MR 0412091 (54:220)
  • [12] H. C. Williams, "Factoring on a computer," Math. Intelligencer, v. 6, 1984, pp. 29-36. MR 748430 (85h:11079)
  • [13] H. C. Williams & S. Judd, "Determination of the primality of N by using factors of $ {N^2} \pm 1$," Math. Comp., v. 30, 1976, pp. 157-172. MR 0396390 (53:257)
  • [14] H. C. Williams & S. Judd, "Some algorithms for prime testing using generalized Lehmer functions," Math. Comp., v. 30, 1976, pp. 867-886. MR 0414473 (54:2574)
  • [15] H. C. Williams & R. Holte, "Some observations on primality testing," Math. Comp., v. 32, 1978, pp. 905-917. MR 0476625 (57:16184)
  • [16] H. C. Williams & E. Seah, "Some primes of the form $ ({a^n} - 1)/(a - 1)$," Math. Comp., v. 33, 1979, pp. 1337-1342. MR 537980 (80g:10014)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y11, 11A51

Retrieve articles in all journals with MSC: 11Y11, 11A51


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0856714-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society