Parity results for certain partition functions and identities similar to theta function identities
Authors:
Richard Blecksmith, John Brillhart and Irving Gerst
Journal:
Math. Comp. 48 (1987), 2938
MSC:
Primary 11P76
MathSciNet review:
866096
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we give a collection of parity results for partition functions of the form and for various sets of positive integers S, which are specified with respect to a modulus, and quadratic polynomials and . Several identities similar to theta function identities, such as and its associated congruence are also proved.
 [1]
Richard
Blecksmith, John
Brillhart, and Irving
Gerst, A computerassisted investigation of
Ramanujan pairs, Math. Comp.
46 (1986), no. 174, 731–749. MR 829643
(87j:11111), http://dx.doi.org/10.1090/S00255718198608296439
 [2]
R. Blecksmith, John Brillhart & Irving Gerst, "Partition function parity theorems and theta function identity analogues," Abstracts Amer. Math. Soc., v. 7, 1986, p. 225.
 [3]
L.
Carlitz and M.
V. Subbarao, A simple proof of the quintuple
product identity, Proc. Amer. Math. Soc. 32 (1972), 42–44. MR 0289316
(44 #6507), http://dx.doi.org/10.1090/S00029939197202893162
 [4]
B.
Gordon, Some identities in combinatorial analysis, Quart. J.
Math. Oxford Ser. (2) 12 (1961), 285–290. MR 0136551
(25 #21)
 [5]
G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1965.
 [6]
M.
D. Hirschhorn, On the residue mod 2 and mod 4 of
𝑝(𝑛), Acta Arith. 38 (1980/81),
no. 2, 105–109. MR 604226
(82d:10025)
 [7]
Percy
Alexander MacMahon, Collected papers. Vol. I, MIT
Press, Cambridge, Mass.London, 1978. Combinatorics; Mathematicians of Our
Time; Edited and with a preface by George E. Andrews; With an introduction
by GianCarlo Rota. MR 514405
(80k:01065)
 [8]
Thomas
R. Parkin and Daniel
Shanks, On the distribution of parity in the
partition function, Math. Comp. 21 (1967), 466–480. MR 0227126
(37 #2711), http://dx.doi.org/10.1090/S00255718196702271269
 [9]
L.
J. Slater, Further identies of the RogersRamanujan type,
Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 0049225
(14,138e)
 [10]
M.
V. Subbarao, Some remarks on the partition function, Amer.
Math. Monthly 73 (1966), 851–854. MR 0201409
(34 #1293)
 [1]
 R. Blecksmith, John Brillhart & Irving Gerst, "A computerassisted investigation of Ramanujan pairs," Math. Comp., v. 46, 1986, pp. 731749. MR 829643 (87j:11111)
 [2]
 R. Blecksmith, John Brillhart & Irving Gerst, "Partition function parity theorems and theta function identity analogues," Abstracts Amer. Math. Soc., v. 7, 1986, p. 225.
 [3]
 L. Carlitz & M. V. Subbarao, "A simple proof of the quintuple product identity," Proc. Amer. Math. Soc., v. 32, 1972, pp. 4244. MR 0289316 (44:6507)
 [4]
 B. Gordon, "Some identities in combinatorial analysis," Quart. J. Math. Oxford Ser. (2), v. 12, 1961, pp. 285290, MR 25 #2340. MR 0136551 (25:21)
 [5]
 G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1965.
 [6]
 M. D. Hirschhorn, "On the residue and of ," Acta Arith., v. 38, 1980, pp. 105109. MR 604226 (82d:10025)
 [7]
 P. A. MacMahon, Collected Papers, vol. 1, MIT Press, Cambridge, Mass., 1978. MR 514405 (80k:01065)
 [8]
 T. R. Parkin & D. Shanks, "On the distribution of parity in the partition function," Math. Comp., v. 21, 1967, pp. 466480. MR 0227126 (37:2711)
 [9]
 L. J. Slater, "Further identities of the RogersRamanujan type," Proc. London Math. Soc. (2), v. 54, 1952, pp. 147167. MR 14, 138. MR 0049225 (14:138e)
 [10]
 M. V. Subbarao, "Some remarks on the partition function," Amer. Math. Monthly, v. 73, 1966, pp. 851854. MR 0201409 (34:1293)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11P76
Retrieve articles in all journals
with MSC:
11P76
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819870866096X
PII:
S 00255718(1987)0866096X
Keywords:
Partition function parity,
theta function analogues
Article copyright:
© Copyright 1987
American Mathematical Society
