Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The computation of the fundamental unit of totally complex quartic orders


Author: Johannes Buchmann
Journal: Math. Comp. 48 (1987), 39-54
MSC: Primary 11Y40; Secondary 11R16
DOI: https://doi.org/10.1090/S0025-5718-1987-0866097-1
MathSciNet review: 866097
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an efficient algorithm for the computation of the regulator and a fundamental unit of an arbitrary totally complex quartic order. We analyze its complexity and we present tables with computational results for the orders $ {\mathbf{Z}}{[^4}\sqrt { - d} ]$, $ 1 \leqslant d \leqslant 500$.


References [Enhancements On Off] (What's this?)

  • [1] H. Amara, "Groupe des classes et unité fondamentale des extensions quadratiques relatives à un corps quadratique imaginaire principal," Pacific J. Math., v. 96, 1981, pp. 1-12. MR 634758 (84a:12006)
  • [2] Z. I. Borevich & I. R. Shafarevich, Number Theory, Academic Press, New York, 1966. MR 0195803 (33:4001)
  • [3] J. Buchmann, "A generalization of Voronoi's unit algorithm I, II," J. Number Theory, v. 20, 1985, pp. 177-209. MR 790781 (86g:11062a)
  • [4] J. Buchmann, "Abschätzung der Periodenlänge einer verallgemeinerten Kettenbruchentwicklung," J. Reine Angew. Math., v. 361, 1985, pp. 27-34. MR 807249 (87b:11011)
  • [5] B. N. Delone & D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., 1964. MR 0160744 (28:3955)
  • [6] U. Fincke & M. Pohst, "Improved methods for calculating vectors of short length, including a complexity analysis," Math. Comp., v. 44, 1985, pp. 463-471. MR 777278 (86e:11050)
  • [7] N. Jeans, "Calculation of fundamental units in some types of quartic number fields," Bull. Austral. Math. Soc., v. 31, 1985, pp. 479-480.
  • [8] T. Kubota, "Über den bizyklischen, biquadratischen Zahlkörper," Nagoya Math. J., v. 10, 1956, pp. 65-85. MR 0083009 (18:643e)
  • [9] R. B. Lakein, "Computation of the ideal class group of certain complex quartic fields," Math. Comp., v. 28, 1974, pp. 839-846. MR 0374090 (51:10290)
  • [10] R. B. Lakein, "Computation of the ideal class groups of certain complex quartic fields. II," Math. Comp., v. 29, 1975, pp. 137-144. MR 0444605 (56:2955)
  • [11] A. K. Lenstra, H. W. Lenstra, Jr. & L. Lovász, "Factoring polynomials with rational coefficients," Math. Ann., v. 261, 1982, pp. 515-534. MR 682664 (84a:12002)
  • [12] H. W. Lenstra, Jr., "Integer programming with a fixed number of variables," Math. Oper. Res., v. 8, 1983, pp. 538-548. MR 727410 (86f:90106)
  • [13] H. W. Lenstra, Jr., On the Calculation of Regulators and Class Numbers of Quadratic Fields (Proc. Journées Arithmétiques 1980, Exeter), London Math. Soc. Lecture Notes Ser., vol. 56, 1982, pp. 123-150. MR 697260 (86g:11080)
  • [14] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Stuttgart, 1954. MR 0064172 (16:239e)
  • [15] R. Scharlau, "The fundamental unit in quadratic extensions of imaginary quadratic number fields," Arch. Math., v. 34, 1980, pp. 534-537. MR 596861 (82c:12005)
  • [16] D. Shanks, The Infrastructure of a Real Quadratic Field and Its Applications, Proc. 1972 Number Theory Conf., Boulder, Colorado, 1973, pp. 217-224. MR 0389842 (52:10672)
  • [17] R. P. Steiner, On the Units in Algebraic Number Fields, Proc. 6th Manitoba Conf. Numer. Math., 1976, pp. 413-435. MR 532716 (81b:12008)
  • [18] G. Voronoi, A Generalization of the Continued Fraction Algorithm, Dissertation, Warsaw, 1896.
  • [19] H. C. Williams, "Continued fractions and number-theoretic computations," Rocky Mountain J. Math., v. 15, 1985, pp. 621-655. MR 823273 (87h:11129)
  • [20] H. C. Williams, G. W. Dueck & B. K. Schmid, "A rapid method of evaluating the regulator and the class number of a pure cubic field," Math. Comp., v. 41, 1983, pp. 235-286. MR 701638 (84m:12010)
  • [21] J. Buchmann & H. C. Williams, "On principal ideal testing in totally complex quartic fields and the determination of certain cyclotomic constants," Math. Comp., v. 48, 1987, pp. 55-66. MR 866098 (87m:11127)
  • [22] H. G. Zimmer, Computational Problems, Methods and Results in Algebraic Number Theory, Lecture Notes in Math., vol. 262, Springer-Verlag, Berlin and New York, 1972. MR 0323751 (48:2107)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R16

Retrieve articles in all journals with MSC: 11Y40, 11R16


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0866097-1
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society