Class groups of quadratic fields. II

Author:
Duncan A. Buell

Journal:
Math. Comp. **48** (1987), 85-93

MSC:
Primary 11R29; Secondary 11R11, 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866100-9

MathSciNet review:
866100

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A computation has been made of the noncyclic class groups of imaginary quadratic fields for even and odd discriminants from 0 to . Among the results are that 95% of the class groups are cyclic, and that and are the first discriminants of imaginary quadratic fields for which the class group has rank three in the 5-Sylow subgroup. The latter was known to be of rank three; this computation demonstrates that it is the first odd discriminant of 5-rank three or more.

**[1]**Joseph Blass & Ray Steiner, "On the equation ,"*Utilitas Math.*, v. 13, 1978, pp. 293-297. MR**0480327 (58:500)****[2]**Duncan A. Buell, "Class groups of quadratic fields,"*Math. Comp.*, v. 30, 1976, pp. 610-623. MR**0404205 (53:8008)****[3]**Duncan A. Buell, "Small class numbers and extreme values of*L*-functions of quadratic fields,"*Math. Comp.*, v. 31, 1977, pp. 786-796. MR**0439802 (55:12684)****[4]**Duncan A. Buell, H. C. Williams & Kenneth S. Williams, "On the imaginary bicyclic biquadratic fields of class-number 2,"*Math. Comp.*, v. 31, 1977, pp. 1034-1042. MR**0441914 (56:305)****[5]**Duncan A. Buell, "The expectation of success using a Monte Carlo factoring method--some statistics on quadratic class numbers,"*Math. Comp.*, v. 43, 1984, pp. 313-327. MR**744940 (85k:11068)****[6]**H. Cohen & H. W. Lenstra, Jr., "Heuristics on class groups of number fields," in*Number Theory*(H. Jager, ed.), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin, 1984, pp. 33-62. MR**756082 (85j:11144)****[7]**Franz-Peter Heider & Bodo Schmithals, "Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen,"*J. Reine Angew. Math.*, v. 336, 1983, pp. 1-25. MR**671319 (84g:12002)****[8]**C. P. Schnorr & H. W. Lenstra, Jr., "A Monte Carlo factoring algorithm with linear storage,"*Math. Comp.*, v. 43, 1984, pp. 289-312. MR**744939 (85d:11106)****[9]**R. J. Schoof, "Class groups of complex quadratic fields,"*Math. Comp.*, v. 41, 1983, pp. 295-302. MR**701640 (84h:12005)****[10]**Daniel Shanks,*Class Number, A Theory of Factorization and Genera*, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1969, pp. 415-440. MR**0316385 (47:4932)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R29,
11R11,
11Y40

Retrieve articles in all journals with MSC: 11R29, 11R11, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866100-9

Article copyright:
© Copyright 1987
American Mathematical Society